References

  1. J.F. Blais, S. Dufresne, G. Mercier, State of the art of technologies for metal removal from industrial effluents, J. Water Sci., 12 (1999) 687–711.
  2. B. Sancey, G. Trunfio, J. Charles, J.F. Minary, S. Gavoille, P.M. Badot, G. Crini, Heavy metal removal from industrial effluents by sorption on cross-linked starch, J. Environ. Manage., 292 (2011) 765–772.
  3. G. McKay, M.J. Bino, A.R. Altamemi, The adsorption of various pollutants from aqueous solutions on to activated carbon, Water Res., 19 (1985) 491–495.
  4. A. Bhatnagar, M. Sillanpää, Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment - a review, Chem. Eng. J., 157 (2010) 277–296.
  5. E. Lorenc-Grabowska, G. Gryglewicz, Adsorption of lignitederived humic acids on coal-based mesoporous activated carbons, J. Colloid Interface Sci., 284 (2005) 416–423.
  6. C. Selomulya, V. Meeyoo, R. Amal, Mechanisms of Cr(VI) removal from water by various types of activated carbons, J. Chem. Technol. Biotechnol., 74 (1999) 111–122.
  7. J.M. Dias, M.C.M. Alvim-Ferraz, M.F. Almeida, J. Rivera-Utrilla, M. Sanchez-Polo, Waste materials for activated carbon preparation and its use in aqueous phase treatment: a review, J. Environ. Manage., 85 (2007) 833–846.
  8. L. Monser, N. Adhoum, Modified activated carbon for the removal of copper, zinc, chromium, and cyanide from wastewater, Sep. Purif. Technol., 26 (2002) 137–146.
  9. S.P. Dubey, K. Gopal, Adsorption of chromium(VI) on low cost adsorbents derived from agricultural waste material: a comparative study, J. Hazard. Mater., 145 (2007) 465–470.
  10. E.A. Ghabbour, G. Davies, Humic Substances: Molecular Details and Applications in Land and Water Conservation, Taylor & Francis, Inc., New York, 2005.
  11. F.J. Stevenson, Humus Chemistry: Genesis, Composition, Reactions, 2nd ed., Wiley, New York, 1994.
  12. E. Tipping, Cation Binding by Humic Substances, Cambridge University Press, Cambridge, 2002.
  13. A.G. Proidakov, Humic acids from mechanically treated coals: a review, Solid Fuel Chem., 43 (2009) 9–14.
  14. V. Romaris-Hortas, A. Moreda-Pineiro, P. Bermejo-Barrera, Application of microwave energy to speed up the alkaline extraction of humic and fulvic acids from marine sediments, Anal. Chim. Acta, 602 (2007) 202–210.
  15. T. Andjelkovic, J. Perovic, M. Purenovic, S. Blagojevic, R. Nikolic, D. Andjelkovic, A. Bojic, Acidity of humic acid related to its oxygen-containing functional groups, Maced. J. Chem. Chem. Eng., 25 (2006) 131–137.
  16. M. Fukushima, S. Tanaka, H. Nakamura, S. Ito, Acid-base characterization of molecular weight fractionated humic acid, Talanta, 43 (1996) 383–390.
  17. J.C. Masini, G. Abate, E.C. Lima, L.C. Hahn, M.S. Nakamura, J. Lichtig, H.R. Nagatomy, Comparison of methodologies for determination of carboxylic and phenolic groups in humic acids, Anal. Chim. Acta, 364 (1998) 223–233.
  18. M. Fuentes, R. Baigorri, G. González-Gaitano, J.M. García-Mina, New methodology to assess the quantity and quality of humic substances in organic materials and commercial products for agriculture, J. Soil Sediments 18 (2018) 1389–1399.
  19. L.P. Canellas, F.L. Olivares, N.O. Aguiar, D.L. Jones, A. Nebbioso, P. Mazzei, A. Piccolo, Humic and fulvic acids as biostimulants in horticulture, Sci. Hortic., 196 (2015) 15–27.
  20. M. Widera, An overview of lithotype associations of Miocene lignite seams exploited in Poland, Geologos, 422 (2016) 213–225.
  21. A. Pietraszewski, Polish lignite mining industry, Brown Coal, 79 (2012) 54–59 (in Polish).
  22. L. Doskočil, J. Burdíková-Szewieczková, V. Enev, L. Kalina, J. Wasserbauer, Spectral characterization and comparison of humic acids isolated from some European lignites, Fuel, 213 (2018) 123–132.
  23. A. Giannouli, S. Kalaitzidis, G. Siavalas, A. Chatziapostolou, K. Christanis, S. Papazisimou, C. Papanicolaou, A. Foscolos, Evaluation of Greek low-rank coals as potential raw material for the production of soil amendments and organic fertilizers, Int. J. Coal Geol., 77 (2009) 383–393.
  24. M. Piwocki, Extent and correlations of main groups of the Tertiary lignite seams on Polish platform area, Geol. Rev., 40 (1992) 281–286 (in Polish).
  25. M. Widera, Changes of the lignite seam architecture — a case study from Polish lignite deposits, Int. J. Coal Geol., 114 (2013) 60–73.
  26. S.A. Semenova, Y.F. Patrakov, M.V. Batina, Ozonization of humic acids in brown coal oxidized in situ, Solid Fuel Chem., 42 (2008) 268–273.
  27. M. Skybova, L. Turcaniova, S. Cuvanova, A. Zubrik, S. Hredzak, L. Hudymacova, Mechanochemical activation of humic acids in the brown coal, J. Alloys Comp., 434 (2007) 842–845.
  28. A. Jezierski, F. Czechowski, M. Jerzykiewicz, J. Drozd, EPR investigations of structure of humic acids from compost, soil, peat and soft brown coal upon oxidation and metal uptake, Appl. Magn. Reson., 18 (2000) 127–128.
  29. H. Martyniuk, J. Więckowska, Adsorption of metal ions on humic acids extracted from brown coals, Fuel Process. Technol., 84 (2003) 23–36.
  30. E.G. Abramov, A.A. Bezzubov, Electrosorptive separation of humic substances, J Water Chem. Technol., 29 (2007) 125–130.
  31. H.G. Sanjay, A.K. Fataftah, D.S. Walia, K.C. Srivastava, K.C., In: E.A. Ghabbour, G. Davies, Eds., Understanding Humic Substances: Advanced Methods, Properties and Applications, The Royal Society of Chemistry, Cambridge, 1999, pp. 241–255.
  32. H.G. Sanjay, K.C. Srivastave, D.S. Walia, Development of HUMASORB™, a Lignite Derived Humic Acid for Removal of Metals and Organic Contaminants from Groundwater, Proceedings of the Environmental Technology Through Industry Partnership Conference, Vol. 2, 1995, pp. 411–424.
  33. M. Huculak-Mączka, J. Hoffmann, K. Hoffmann, Evaluation of the possibilities of using humic acids obtained from lignite in the production of commercial fertilizers, J. Soils Sediments, 18 (2018) 2868–2880.
  34. J. Macuda, A. Nodzeński, M. Wagner, L. Zawisza, Sorption of methane on lignite from Polish deposits, Int. J. Coal Geol., 87 (2011) 41–48.
  35. R.T. Lamar, K.H. Talbot, Critical Comparison of Humic Acid Test Methods, Comm. Soil Sci. Plant Anal., 40 (2009) 2309–2322.
  36. G. Arslan, S. Edebali, E. Pehlivan, Physical and chemical factors affecting the adsorption of Cr(VI) via humic acids extracted from brown coals, Desalination, 255 (2010) 117–123.
  37. A.K. Pandey, S.D. Pandey, V. Misra, Stability constants of metal - humic acid complexes and its role in environmental detoxification, Ecotoxicol. Environ. Saf., 47 (2000) 195.
  38. M. Klavins, L. Ansone, J. Tjutrins, I. Silamikele, O. Purmalis. Differential thermal analysis of peat and peat humic acids in relation to their origin, In: M. Klavins, Ed., Mires and Peat, University of Latvia Press, Riga, 2010, pp. 207–214.
  39. A. Iordanidisa, A. Georgakopoulosa, K. Markovab, A. Filippidisa, A. Kassoli-Fournaraki, Application of TG-DTA to the study of Amyntean lignites, northern Greece, Thermochim. Acta, 371 (2001) 137–141.
  40. O. Francioso, D. Montecchio, P. Gioacchini, C. Ciavatta, Thermal analysis (TG-DTA) and isotopic characterization (13C-15N) of humic acids from different origins, Appl. Geochem., 20 (2005) 537–544.
  41. M.T. Dell’Abate, A. Benedetti, A. Trinchera, C. Dazzi, Humic substances along the profile of two Typic Haploxerert, Geoderma, 107 (2002) 281–296.
  42. C. Namasivayam, S. Senthilkumar, Adsorption of copper(II) by “waste” Fe(III)/Cr(III) hydroxide from aqueous solution and radiator manufacturing industry wastewater, Sep. Sci. Technol., 34 (1999) 201–217.
  43. E. Pehlivan, G. Arslan, Removal of metal ions using lignite in aqueous solution - Low cost biosorbents, Fuel Process. Technol., 88 (2007) 99–106.