References
- P. Juntunen, M. Liukkonen, M. Pelo, M.J. Lehtola, Y. Hiltunen,
Modelling of water quality: an application to a water treatment
process, Appl. Comp. Intel. Soft Comp., 2012 (2012) 4.
- F. Edition, Guidelines for drinking-water quality, WHO Chron,
38 (2011) 104–108.
- R.D. Letterman, A.W.W. Association, Water Quality and Treatment,
McGraw-Hill, 1999.
- M.L. Davis, Water and Wastewater Engineering, Design Principles
and Practice, The Mc Graw-Hill Companies, Michigan
State University,2010.
- F.-P.-T. C. o. D. Water, Turbidity in Drinking Water ed. Canada:
Federal-Provincial-Territorial Committee 2012.
- G. Apostol, R. Kouachi, I. Constantinescu, Optimization of
coagulation-flocculation process with aluminum sulfate based
on response surface methodology, UPB Sci. Bull, Series B, 73
(2011) 77–84.
- L.S. Kang, J.L. Cleasby, Temperature effects on flocculation
kinetics using Fe (III) coagulant, J. Environ. Eng., 121 (1995)
893.
- J.E. Van Benschoten, J.K. Edzwald, Chemical aspects of coagulation
using aluminum salts—I. Hydrolytic reactions of alum and
polyaluminum chloride, Water Res., 24 (1990) 1519–1526.
- J.E. Van Benschoten, J.K. Edzwald, Chemical aspects of coagulation
using aluminum salts—II. Coagulation of fulvic acid
using alum and polyaluminum chloride, Water Res., 24 (1990)
1527–1535.
- C. Huang, H. Shiu, Interactions between alum and organics
in coagulation, Colloids Surf. A Physicochem. Eng. Asp., 113
(1996) 155–163.
- J. Xie, D. Wang, J. van Leeuwen, Y. Zhao, L. Xing, C.W. Chow,
pH modeling for maximum dissolved organic matter removal
by enhanced coagulation, J. Environ. Sci., 24 (2012) 276–283.
- S. Heddam, A. Bermad, N. Dechemi, ANFIS-based modelling
for coagulant dosage in drinking water treatment plant: a case
study, Environ. Monit. Assess., 184 (2012) 1953–1971.
- J. Bratby, Coagulation and Flocculation in Water and Wastewater
Treatment, IWA Publishing, 2016.
- H.R. Maier, N. Morgan, C.W. Chow, Use of artificial neural
networks for predicting optimal alum doses and treated water
quality parameters, Environ. Model Softw., 19 (2004) 485–494.
- Y. Zhao, Y. Wang, B. Gao, H. Shon, J.-H. Kim, Q. Yue, Coagulation
performance evaluation of sodium alginate used as coagulant
aid with aluminum sulfate, iron chloride and titanium
tetrachloride, Desalination, 299 (2012) 79–88.
- S. Xia, X. Li, Q. Zhang, B. Xu, G. Li, Ultrafiltration of surface
water with coagulation pretreatment by streaming current
control, Desalination, 204 (2007) 351–358.
- J.C. Vickers, M.A. Thompson, U.G. Kelkar, The use of membrane
filtration in conjunction with coagulation processes for
improved NOM removal, Desalination, 102 (1995) 57–61.
- R. Bryant, Optimizing coagulation with the Streaming Current
Monitor, J. New England Water Works Assoc., 110 (1996)
268–271.
- C. Baxter, S. Stanley, Q. Zhang, Development of a full-scale
artificial neural network model for the removal of natural
organic matter by enhanced coagulation, J. Water SRT., 48
(1999) 129–136.
- R.-F. Yu, S.-F. Kang, S.-L. Liaw, M.-C. Chen, Application of artificial
neural network to control the coagulant dosing in water
treatment plant, Water Sci. Technol., 42 (2000) 403–408.
- J.M. Montgomery, Water Treatment: Principles and Design,
Published by John Wiley & Sons Ltd, New York, USA, 1985.
- D.-S. Joo, D.-J. Choi, H. Park, The effects of data preprocessing
in the determination of coagulant dosing rate, Water Res., 34
(2000) 3295–3302.
- J.-L. Lin, C. Huang, J.R. Pan, D. Wang, Effect of Al (III) speciation
on coagulation of highly turbid water, Chemosphere, 72
(2008) 189–196.
- J.H. Kweon, H.-W. Hur, G.-T. Seo, T.-R. Jang, J.-H. Park, K.Y.
Choi, et al., Evaluation of coagulation and PAC adsorption
pretreatments on membrane filtration for a surface water in
Korea: A pilot study, Desalination, 249 (2009) 212–216.
- C. Gagnon, B. Grandjean, J. Thibault, Modelling of coagulant
dosage in a water treatment plant, Artif. Intellig. Eng., 11 (1997)
401–404.
- G. Carrera, J. Aires-de-Sousa, Estimation of melting points of
pyridinium bromide ionic liquids with decision trees and neural
networks, Green Chem., 7 (2005) 20–27.
- G.-D. Wu, S.-L. Lo, Predicting real-time coagulant dosage in
water treatment by artificial neural networks and adaptive
network-based fuzzy inference system, Eng. Appl. Artif.
Intell., 21 (2008) 1189–1195.
- A. Robenson, S. Shukor, N. Aziz, Development of process
inverse neural network model to determine the required alum
dosage at Segama Water Treatment Plant Sabah, Malaysia,
Comp. Aided Chem. Eng., 27 (2009) 525–530.
- K.H. Reckhow, Water quality prediction and probability network
models, Can. J. Fish Aquat. Sci., 56 (1999) 1150–1158.
- C. Baxter, Q. Zhang, S. Stanley, R. Shariff, R.-R. Tupas, H. Stark,
Drinking water quality and treatment: the use of artificial neural
networks, Can. J. Civ. Eng., 28 (2001) 26–35.
- W.A. Pike, Modeling drinking water quality violations with
Bayesian networks, J. Am. Water Resour. Assoc., 40 (2004)
1563–1578.
- M. Najafzadeh, Neurofuzzy-based GMDH-PSO to predict
maximum scour depth at equilibrium at culvert outlets, J.
Pipeline Syst. Eng. Pract., 7 (2015) 06015001.
- M. Najafzadeh, Neuro-fuzzy GMDH systems based evolutionary
algorithms to predict scour pile groups in clear water conditions,
Ocean Eng., 99 (2015) 85–94.
- M. Najafzadeh, H. Bonakdari, Application of a neuro-fuzzy
GMDH model for predicting the velocity at limit of deposition
in storm sewers, J. Pipeline Syst. Eng. Pract., 8 (2016) 06016003.
- M. Najafzadeh, F. Saberi-Movahed, S. Sarkamaryan, NF-GMDH-based self-organized systems to predict bridge pier scour
depth under debris flow effects, Marine Georesour. Geotechnol.,
(2017) 1–14.
- M. Najafzadeh, A. Tafarojnoruz, Evaluation of neuro-fuzzy
GMDH-based particle swarm optimization to predict longitudinal
dispersion coefficient in rivers, Environ. Earth Sci., 75
(2016) 157.
- M. Najafzadeh, G.-A. Barani, M.R.H. Kermani, Abutment
scour in clear-water and live-bed conditions by GMDH network,
Water Sci. Technol., 67 (2013) 1121–1128.
- M. Najafzadeh, G.-A. Barani, Comparison of group method of
data handling based genetic programming and back propagation
systems to predict scour depth around bridge piers, Scientia
Iranica, 18 (2011) 1207–1213.
- M. Najafzadeh, H.M. Azamathulla, Group method of data
handling to predict scour depth around bridge piers, Neural
Comput. Applic., 23 (2013) 2107–2112.
- M. Najafzadeh, G.-A. Barani, M.-R. Hessami-Kermani, Group
method of data handling to predict scour at downstream of a
ski-jump bucket spillway, Earth Sci. Inform., 7 (2014) 231–248.
- A. Daghbandan, M. Akbarizadeh, M. Yaghoobi, Modeling and
optimization of poly electrolyte dosage in water treatment
process by GMDH type-NN and MOGA, Int. J. Chemoinform.
Chem. Eng. (IJCCE), 3 (2013) 94–106.
- A.G. Ivakhnenko, Polynomial theory of complex systems, IEEE
Trans. Syst. Man. Cybern., 1 (1971) 364–378.
- S. Farlow, Self-organizing method in modeling: GMDH type
algorithm, ed: Marcel Dekker Inc., New York, 1984.
- A.G. Ivakhnenko, Polynomial theory of complex systems,
Trans. Syst. Man. Cybern., 1 (1971) 364–378.
- N. Nariman-Zadeh, A. Darvizeh, M. Felezi, H. Gharababaei,
Polynomial modelling of explosive compaction process of
metallic powders using GMDH-type neural networks and
singular value decomposition, Model Simul. Mat. Sci. Eng., 10
(2002) 727.
- A. Jamali, A. Hajiloo, N. Nariman-Zadeh, Reliability-based
robust Pareto design of linear state feedback controllers
using a multi-objective uniform-diversity genetic algorithm
(MUGA), Expert Syst. Applic., 37 (2010) 401–413.
- A. Jamali, N. Nariman-zadeh, H. Ashraf, Z. Jamali, Robust
Pareto Design of ANFIS Networks for Nonlinear Systems with
Probabilistic Uncertainties, 2011, pp. 300–304.
- A. Jamali, N. Nariman-zadeh, K. Atashkari, Multi-objective
uniform-diversity genetic algorithm (MUGA), Adv. Evolution.
Algorithms, (2008) 978–983.
- N. Nariman-Zadeh, A. Darvizeh, M. Dadfarmai, Design of
ANFIS networks using hybrid genetic and SVD methods for
the modelling of explosive cutting process, J. Mater. Process.
Technol., 155 (2004) 1415–1421.
- M. Najafzadeh, F. Saberi-Movahed, GMDH-GEP to predict free
span expansion rates below pipelines under waves, Marine
Georesour. Geotechnol., (2018) 1–18.