References

  1. M.M. Momeni, Y. Ghayeb, Z. Ghonchegi, Visible light activity of sulfur-doped TiO2 nanostructure photoelectrodes prepared by single-step electrochemical anodizing process, J. Solid State Electrochem., 19 (2015) 1359–1366.
  2. M.M. Momeni, M. Hakimian, A. Kazempour, Preparation and characterization of manganese–TiO2 nanocomposites for solar water splitting, Surf. Eng., 32 (2016) 514–519.
  3. M.M. Momeni, Y. Ghayeb, Fabrication, characterization and photoelectrochemical performance of chromium-sensitized titania nanotubes as efficient photoanodes for solar water splitting, J. Solid State Electrochem., 20 (2015) 683–689.
  4. M.M. Momeni, Y. Ghayeb, M. Shafiei, Preparation and characterization of CrFeWTiO2 photoanodes and their photoelectrochemical activities for water splitting, Dalton Trans., 46 (2017) 12527–12536.
  5. M.M. Momeni, Y. Ghayeb, Photoinduced deposition of gold nanoparticles on TiO2-WO3 nanotube films as efficient photoanodes for solar water splitting, Appl. Phys. A, 122 (2016).
  6. M.M. Momeni, Y. Ghayeb, F. Ezati, Fabrication, characterization and photoelectrochemical activity of tungsten-copper co-sensitized TiO2 nanotube composite photoanodes, J. Colloid Interface Sci., 514 (2018) 70–82.
  7. M. Hakamizadeh, S. Afshar, A. Tadjarodi, R. Khajavian, M.R. Fadaie, B. Bozorgi, Improving hydrogen production via water splitting over Pt/TiO2/activated carbon nanocomposite, Int. J. Hydrogen Energy, 39 (2014) 7262–7269.
  8. A.H. Tamboli, A.A. Chaugule, F.A. Sheikh, W.J. Chung, H. Kim, Synthesis and application of CeO2-NiO loaded TiO2 nanofiber as novel catalyst for hydrogen production from sodium borohydride hydrolysis, Energy, 89 (2015) 568–575.
  9. J. Cheng, C. Xiang, Y. Zoun, H. Chu, S. Qiu, H. Zhang, L. Sunnn, F. Xu, Highly active nanoporous Co–B–TiO2 framework for hydrolysis of NaBH4, Ceram. Int., 41 (2015) 899–905.
  10. O. Sahin, M.S. Izgi, E. Onat, C. Saka, Influence of the using of methanol instead of water in the preparation of Co-Be-TiO2 catalyst for hydrogen production by NaBH4 hydrolysis and plasma treatment effect on the Co-BeTiO2 catalyst, Int. J. Hydrogen Energy, 41 (2016) 2539–2546.
  11. Y.R. Liu, X. Li, G.Q. Han, B. Dong, W.H. Hu, X. Shang, Y.M. Chai, Y.Q. Liu, C.G. Liu, Template-assisted synthesis of highly dispersed MoS2 nanosheets with enhanced activity for hydrogen evolution reaction, Int. J. Hydrogen Energy, 42 (2017) 2054–2060.
  12. W. Ploysuksai, P. Rangsunvigit, S. Kulprathipanja, Effects of TiO2 and Nb2O5 on hydrogen desorption of Mg(BH4)2, Int. J. Chem. Biol. Eng., 6 (2012) 328–332.
  13. S.S. Muir, X. Yao, Progress in sodium borohydride as a hydrogen storage material: Development of hydrolysis catalysts and reaction systems, Int. J. Hydrogen Energy, 36 (2011) 5983–5997.
  14. N. Sahiner, A.O. Yasar, N. Aktas, Metal-free pyridinium-based polymeric ionic liquids as catalyst for H2 generation from NaBH4, Renewable Energy, 101 (2017) 1005–1012.
  15. Z. Li, H. Li, L. Wang, T. Liu, T. Zhang, G. Wang, G. Xie, Hydrogen generation from catalytic hydrolysis of sodium borohydride solution using supported amorphous alloy catalysts (Ni-Co-P/g-Al2O3), Int. J. Hydrogen Energy, 39 (2014) 14935–14941.
  16. O. Sahin, D. Kılınc, C. Saka, Bimetallic Co-Ni based complex catalyst for hydrogen production by catalytic hydrolysis of sodium borohydride with an alternative approach, J. Energy Inst., 89 (2016) 617–626.
  17. C. Saka, O. Sahin, H. Demir, A. Karabulut, A. Sarikaya, Hydrogen generation from sodium borohydride hydrolysis with a Cu–Co-based catalyst: A kinetic study, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37 (2015) 956–964.
  18. S. Eugenio, U.B. Demirci, T. M. Silva, M.J. Carmezim, M.F. Montemor, Copper-cobalt foams as active and stable catalysts for hydrogen release by hydrolysis of sodium borohydride, Int. J. Hydrogen Energy, 41 (2016) 8438–8448.
  19. A. Koska, N. Toshikj, S. Hoett, L. Bernaud, U.B. Demirci, Volcano plot for bimetallic catalysts in hydrogen generation by hydrolysis of sodium borohydride, J. Chem. Educ., 94 (2017) 1163–1166.
  20. A. Marchionni, M. Bevilacqua, J. Filippi, M.G. Folliero, M. Innocenti, A. Lavacchi, H.A. Miller, M.V. Pagliaro, F. Vizza, High volume hydrogen production from the hydrolysis of sodium borohydride using a cobalt catalyst supported on a honeycomb matrix, J. Power Sources, 299 (2015) 391–397.
  21. H.A. Bandal, A.R. Jadhav, H. Kim, Cobalt impregnated magnetite-multiwalled carbon nanotube nanocomposite as magnetically separable efficient catalyst for hydrogen generation by NaBH4 hydrolysis, J. Alloys Compd., 699 (2017) 1057–1067.
  22. Y. Chen, Y. Shi, X. Liu, Y. Zhang, Preparation of polyvinylidene fluoride–nickel hollow fiber catalytic membranes for hydrogen generation from sodium borohydride, Fuel, 140 (2015) 685–692.
  23. Y. Guo, J. Qian, A. Iqbal, L. Zhang, W. Liu, W. Qin, Pd nanoparticles immobilized on magnetic carbon dots@Fe3O4 nanocubes as a synergistic catalyst for hydrogen generation, Int. J. Hydrogen Energy, 42 (2017) 15167–15177.
  24. M.M. Momeni, I. Ahadzadeh, A. Rahmati, Nitrogen, carbon and iron multiple-co doped titanium dioxide nanotubes as a new high-performance photo catalyst, J. Mater. Sci.: Mater. Electron., 27 (2016) 8646–8653.
  25. Y. Ma, X. Li, Y. Zhang, L. Chen, J. Wu, D. Gao, J. Bi, G. Fan, Ruthenium nanoparticles supported on TiO2 (B) nanotubes: Effective catalysts in hydrogen evolution from the hydrolysis of ammonia borane, J. Alloys Compd., 708 (2017) 270–277.
  26. S. Chen, C. Ostrom, A. Chen, Functionalization of TiO2 nanotubes with palladium nanoparticles for hydrogen sorption and storage, Int. J. Hydrogen Energy, 38 (2013) 14002–14009.
  27. M. Zhang, R. Sun, Y. Li, Q. Shi, L. Xie, J. Chen, X. Xu, H. Shi, W. Zhao, High H2 evolution from quantum Cu(II) nanodot-doped two-dimensional ultrathin TiO2 nanosheets with dominant exposed {001} facets for reforming glycerol with multiple electron transport pathways, J. Phys. Chem. C, 120 (2016) 10746–10756.
  28. M.M. Momeni, Fabrication of copper decorated tungsten oxide–titanium oxide nanotubes by photochemical deposition technique and their photocatalytic application under visible light, Appl. Surf. Sci., 357 (2015) 160–166.
  29. M.M. Momeni, N. Mohammadi, M. Mirhosseini, Photocatalytic property of Pt-CuO nanostructure films prepared by wet-chemical route and photochemical deposition method, J. Mater. Sci.: Mater. Electron., 27 (2016) 10147–10156.
  30. M.M. Momeni, Y. Ghayeb, Preparation of cobalt coated TiO2 and WO3–TiO2 nanotube films via photo-assisted deposition with enhanced photocatalytic activity under visible light illumination, Ceram. Int., 42 (2016) 7014–7022.
  31. M.M. Momeni, I. Ahadzadeh, Copper photodeposition on titania nanotube arrays and study of their optical and photocatalytic properties, Mater. Res. Innovations, 20 (2016) 44–50.
  32. M. Kominkova, V. Milosavljevic, P. Vitek, H. Polanska, K. Cihalova, S. Dostalova, V. Hynstova, R. Guran, P. Kopel, L. Richtera, M. Masarik, M. Brtnicky, J. Kynicky, O. Zitka, V. Adam, Comparative study on toxicity of extracellularly biosynthesized and laboratory synthesized CdTe quantum dots, J. Biotechnol., 241 (2017) 193–200.
  33. H. Hosseinzadeh, N. Bahador, Novel CdS quantum dots templated hydrogel nanocomposites: Synthesis, characterization, swelling and dye adsorption properties, J. Mol. Liq., 240 (2017) 630–641.
  34. T. Yang, Y.K. Li, M.L. Chen, J.H. Wang, Supported carbon dots decorated with metallothionein for selective cadmium adsorption and removal, Chin. Chem. Lett., 26 (2015) 1496–1501.
  35. M. Hamadanian, S. Karimzadeh, V. Jabbari, D. Villagrán, Synthesis of cysteine, cobalt and copper-doped TiO2 nanophotocatalysts with excellent visible-light-induced photocatalytic activity, Mater. Sci. Semicond. Process., 41 (2016) 168–176.
  36. J.V. Pasikhani, N. Gilani, A.E. Pirbazari, The effect of the anodization voltage on the geometrical characteristics and photocatalytic activity of TiO2 nanotube arrays, Nano-Struct. Nano-Objects, 8 (2016), 7–14.
  37. M.M. Momeni, Y. Ghayeb, Synthesis and characterization of iron-doped titania nanohoneycomb and nanoporous semiconductors by electrochemical anodizing method as good visible light active photocatalysts, J. Mater. Sci.: Mater. Electron., 26 (2015) 5509–5517.
  38. M.M. Momeni, Y. Ghayeb, Photochemical deposition of platinum on titanium dioxide–tungsten trioxide nanocomposites: an efficient photocatalyst under visible light irradiation, J. Mater. Sci.: Mater. Electron., 27 (2015) 1062–1069.
  39. M.M. Momeni, Y. Ghayeb, M. Davarzadeh, Electrochemical construction of different titania–tungsten trioxide nanotubular composite and their photocatalytic activity for pollutant degradation: a recyclable photocatalysts, J. Mater. Sci.: Mater. Electron., 26 (2014) 1560–1567.
  40. N.N. Ilkhechi, M. Alijani, B.K. Kaleji, Optical and structural properties of TiO2 nanopowders with Co/Ce doping at various temperature, Opt. Quantum Electron., 148 (2016), 1–9.
  41. R. Bashiri, N.M. Mohamed, C. F. Kait, S. Sufian, Hydrogen production from water photosplitting using Cu/TiO2 nanoparticles: Effect of hydrolysis rate and reaction medium, Int. J. Hydrogen Energy, 40 (2015) 6021–6037.
  42. A.E. Pirbazari, P. Monazzam, B.F. Kisomi, Co/TiO2 nanoparticles: preparation, characterization and its application for photocatalytic degradation of methylene blue, Desal. Water Treat., 63 (2017) 283–292.
  43. P. Dashora, C. Ameta, R. Ameta, S.C. Ameta, Dye-sensitized solar cell using copper and nitrogen co-doped titania as photoanode, Int. J. Sustainable Green Energy, 4 (2015) 219–226.
  44. J.V. Pasikhani, N. Gilani, A.E. Pirbazari, The correlation between structural properties, geometrical features, and photoactivity of freestanding TiO2 nanotubes in comparative degradation of 2,4–dichlorophenol and methylene blue, Mater. Res. Express, 5 (2018) 025016.
  45. D. Tsiourvas, A. Tsetsekou, M. Arkas, S. Diplas, E. Mastrogianni, Covalent attachment of a bioactive hyperbranched polymeric layer to titanium surface for the biomimetic growth of calcium phosphates, J. Mater. Sci.: Mater. Med., 22 (2011) 85–96.
  46. S.M. Reda, M. Khairy, M.A. Mousa, Photocatalytic activity of nitrogen and copper doped TiO2 nanoparticles prepared by microwave-assisted sol-gel process, Arabian J. Chem., (2017), 1–10.
  47. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051–1069.
  48. M.M. Labani, R. Rezaee, A. Saeedi, A.A. Hinai, Evaluation of pore size spectrum of gas shale reservoirs using low pressure nitrogen adsorption, gas expansion and mercury porosimetry: A case study from the Perth and Canning Basins, Western Australia, J. Pet. Sci. Eng., 112 (2013) 7–16.
  49. Z. Wu, X. Mao, Q. Zi, R. Zhang, T. Dou, A.C.K. Yip, Mechanism and kinetics of sodium borohydride hydrolysis over crystalline nickel and nickel boride and amorphous nickel-boron nanoparticles, J. Power Sources, 268 (2014) 596–603.
  50. K. Bhattacharyya, A. Danon, B.K. Vijayan, K.A. Gray, P.C. Stair, E. Weitz, Role of the surface lewis acid and base sites in the adsorption of CO2 on titania nanotubes and platinized titania nanotubes: an in situ FT-IR study, J. Phys. Chem. C, 117 (2013) 12661–12678.
  51. Y. Harima, T. Fujita, Y. Kano, I. Imae, K. Komaguchi, Y. Ooyama, J. Ohshita, Lewis-acid sites of TiO2 surface for adsorption of organic dye having pyridyl group as anchoring unit, J. Phys. Chem. C, 117 (2013) 16364–16370.
  52. L.H. Mendoza-Huizar, D.E.G. Rodríguez, C.H. Rios-Reyes, A. Alatorre-Ordaz, Theoretical quantum study about the adsorption of BH4 onto X(100) where (X = Cu, Ag and Au), J. Mex. Chem. Soc., 56 (2012) 302–310.
  53. G. Guella, C. Zanchetta, B. Patton, A. Miotello, New insights on the mechanism of palladium-catalyzed hydrolysis of sodium borohydride from 11B NMR measurements, J. Phys. Chem. B, 110 (2006) 17024–17033.
  54. Z. Futera, N.J. English, Electric-field effects on adsorbed-water structural and dynamical properties at rutile- and anatase-TiO2 surfaces, J. Phys. Chem. C, 120 (2016) 19603–19612.
  55. X. Shen, Q. Wang, Q. Wu, S. Guo, Z. Zhang, Z. Sun, B. Liu, Z. Wang, B. Zhao, W. Ding, CoB supported on Ag-activated TiO2 as a highly active catalyst for hydrolysis of alkaline NaBH4 solution, Energy, 90 (2015) 464–474.
  56. A.F. Shojaei, M. Khakzad, M.H. Loghmani, Hydrogen generation as a clean energy through hydrolysis of sodium borohydride over Cu-Fe-B nano powders; effect of polymers and surfactants, Energy, 126 (2017) 830–840.