References

  1. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photo catalysis: mechanisms and materials. Chem. Rev., 114 (2014) 9919–9986.
  2. P. Pichat, Photo catalysis and water purification: from Fundamentals to Recent Applications, Wiley, Germany, 2013.
  3. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photo catalytic water treatment technology: a review, Water Res., 44 (2010) 2997–3027.
  4. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photo catalysts for environmental applications, Appl. Catal., B 125 (2012) 331–349.
  5. R. Fagan, D.E. McCormack, D.D. Dionysiou, S.C. Pillai A review of solar and visible light active TiO2 photo catalysis for treating bacteria, cyanotoxins and contaminants of emerging concern, Mat. Sci. Semicon. Proc., 42 (2016) 2–14.
  6. S. Mozia, P. Brozek, J. Przepiorski, B. Tryba, A.W. Morawski, Immobilized TiO2 for phenol degradation in a pilot-scale photo catalytic reactor, J. Nanomater., 2012 (2012) 1–10.
  7. K. Naeem, F. Ouyang, Influence of supports on photo catalytic degradation of phenol and 4-chlorophenol in aqueous suspensions of titanium dioxide, J. Environ. Sci., 25 (2013) 399–404.
  8. F. Li, S. Sun, Y. Jiang, M. Xia, M. Sun, B. Xue, Photo degradation of an azo dye using immobilized nanoparticles of TiO2 supported by natural porous mineral, J. Hazard. Mater., 152 (2008) 1037–1044.
  9. S. Salaeh, D.J. Perisic, M. Biosic, H. Kusic, S. Babic, U. Lavrencic Stangar, D.D. Dionysiou, A. Loncaric Bozic, Diclofenac removal by solar assisted photo calaysis using TiO2-based zeolite catalyst; mechanisms, pathways and environmental aspects, Chem. Eng. J., 304 (2016) 289–302.
  10. P. Lei, F. Wang, X. Gao, Y. Ding, S. Zhang, J. Zhao, S. Liu, M. Yang, Immobilization of TiO2 nanoparticles in polymeric substrates by chemical bonding for multi-cycle photo degradation of organic pollutants, J. Hazard. Mater., 227–228 (2012) 185–194.
  11. S. Liu, J. Zhu, Q. Yang, P. Xu, J. Ge, X. Guo, Preparation of SnO2–TiO2/fly ash cenospheres and its application in phenol degradation, Photochem. Photobiol., 91 (2015) 1302–1308.
  12. Y.T. Yu, Synthesis of nanocrystalline TiO2-coated coal fly ash for photo catalyst, Korean J. Chem. Eng., 20 (2003) 850–854.
  13. M.R. Senapati, Fly ash from thermal power plants – waste management and overview, Current Sci., 100 (2011) 1791–1794.
  14. EC, Implementation of the Circular Economy Action Plan, http://ec.europa.eu/environment/circular-economy/index_en.htm (accessed on March 5, 2018).
  15. EU, Directive 2013/39/EU of the European Parliament and of the Council amending Directives 2000/60/EC and 2008/105/ EC as regards priority substances in the field of water policy, Off. J. Eur. Commun., 226 (2013) 1–17.
  16. JCR Technical Report, Development of the First Watch List under the Environmental Quality Standards Directive. https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/development-first-watch-list-under-environmental-quality-standards-directive (accessed on Dec 20, 2017).
  17. D. Bhatia, N.R. Sharma, J. Singh, R.S. Kanwar, Biological methods for textile dye removal from wastewater: A review, Crit. Rev. Environ. Sci. Technol., 47 (2017) 1836–1876.
  18. K. Hunger, Industrial Dyes; Chemistry, Properties, Application, Wiley-VCH, Weinheim, Germany, 2002.
  19. H. Kusic, N. Koprivanac, A. Loncaric Bozic, Environmental aspects on the photo degradation of reactive triazine dyes in aqueous media, J. Photochem. Photobiol., A 252 (2013) 131–144.
  20. Y. Verma, Acute toxicity assessment of textile dyes and textile and dye industrial effluents using Daphnia magna bioassay, Toxicol. Ind. Health, 24(7) (2008) 491–500.
  21. R. Lopez, R. Gomez, Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study, J. Sol-Gel Sci. Technol., 61 (2012) 1–7.
  22. K. Koci, L. Obalova, L. Matejova, D. Placha, Z. Lacny, J. Jirkovsky, O. Solcova, Effect of TiO2 particle size on the photo catalytic reduction of CO2, Appl. Catal., B 89 (2009) 494–502.
  23. H. Uppal, J. Hemlata, N. Tawale, Singh Zinc peroxide functionalized synthetic graphite: An economical and efficient adsorbent for adsorption of arsenic (III) and (V), J. Environ. Chem. Eng., 4 (2016) 2964–2975.
  24. M. Kovacic, H. Kusic, M. Fanetti, U.L. Stangar, M. Valant, D.D. Dionysiou, A.L. Bozic, TiO2-SnS2 nanocomposites; solar active photo catalytic materials for water treatment, Environ. Sci. Poll. Res., 24 (2017) 19965–19979.
  25. R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 3rd ed., John Wiley & Sons, Hoboken, USA, 2009.
  26. Z. Sarbak. M. Kramer-Wachowiak, Porous structure of waste fly ashes and their chemical modification, Powder Technol., 123 (2002) 53–58.
  27. A. Duta, M. Visa, Simultaneous removal of two industrial dyes by adsorption and photo catalysis on a fly-ash-TiO2 composite, J. Photochem. Photobiol. A., 306 (2015) 21–30.
  28. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev., 107 (2007) 2891–2959.
  29. D. Yang, H. Li, Z. Zheng, Y. Yuan, J. Zhao, E.R. Waclawik, X. Ke, H. Zhu, An efficient photo catalyst structure: TiO2(B) nanofibers with a shell of anatase nanocrystals, J. Am. Chem. Soc., 131 (2009) 17885–17893.
  30. C. Zhao, M. Pelaez, D. Dionysiou, S.C. Pillai, J.A. Byrne, K.E. O’Shea, UV and visible light activated TiO2 photocatalysis of 6-hydroxymethyl uracil, a model compound for the potent cyanotoxin cylindrospermopsin, Catal. Today, 224 (2014) 70–76.
  31. M. Kovacic, S. Salaeh, H. Kusic, A. Suligoj, M. Kete, M. Fanetti, U.L. Stangar, D.D. Dionysiou, A.L. Bozic, Solar-driven photo catalytic treatment of diclofenac using immobilized TiO2-based zeolite composites, Environ. Sci. Poll. Res., 23 (2016) 17982–17994.
  32. K. Yetilmezsoy, S. Demirel, R.J. Vanderbei, Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box-Behnken experimental design, J. Hazard. Mater., 171 (2009) 551–562.
  33. S. Debnath, N. Ballav, H. Nyoni, A. Maity, K. Pillay, Optimization and mechanism elucidation of the catalytic photo-degradation of the dyes Eosin Yellow (EY) and Naphthol blue black (NBB) by a polyaniline-coated titanium dioxide nanocomposite, Appl. Catal. B., 163 (2015) 330–342.
  34. M. Dopar, H. Kusic, N. Koprivanac, Treatment of simulated industrial wastewater by photo-Fenton process: Part I. The optimization of process parameters using design of experiments (DOE), Chem. Eng. J., 173(2) (2011) 267–279.
  35. N.T. Boncagni, J.M. Otaegui, E. Warner, T. Curran, J. Ren, M. M. Fidalgo de Cortalezzi, Exchange of TiO2 nanoparticles between streams and stream beds, Environ. Sci. Technol., 43 (2009) 7699–7705.
  36. D.J. Perisic, M. Kovacic, H. Kusic, U.L. Stangar, V. Marin, A.L. Bozic, The comparative analysis of UV-C/H2O2 and UV-A/TiO2 processes for degradation of diclofenac in water, React. Kinet. Mech. Cat., 118 (2016) 451–462.
  37. P.K.J. Robertson, J.M.C. Robertson, D.W. Bahnemann, Removal of microorganisms and their chemical metabolites from water using semiconductor photo catalysis, J Hazard Mater., 211–212 (2012) 161–171.
  38. T. Fotiou, T.M. Triantis, T. Kaloudis, A. Hiskia, Evaluation of the photo catalytic activity of TiO2 based catalysts for the degradation and mineralization of cyanobacterial toxins and water off-odor compounds under UV-A, solar and visible light, Chem. Eng. J., 261 (2015) 17–26.
  39. U.I. Gaya, Heterogeneous photo catalysis using inorganic semiconductor solids, Springer, Heidelberg, Germany, 2014.
  40. L. Wojnárovits, T. Pálfi, E. Takács, Kinetics and mechanism of azo dye destruction in advanced oxidation processes, Radiat. Phys. Chem., 76 (2007) 1497–1501.
  41. C. Luo, H. Wang, W. Dong, X. Zhang, Theoretical investigation on the mechanism of the OH-initiated degradation process of Reactive Red 2 azo dye, RSC Adv., 7 (2017) 41799–41811.
  42. M.J. Farré, M.I. Franch, J.A. Ayllón, J. Peral, X. Domènech, Biodegradability of treated aqueous solutions of biorecalcitrant pesticides by means of photo catalytic ozonation, Desalination, 211 (2007) 22–33.
  43. D.J. Perisic, A. Belet, H. Kusic, U.L. Stangar, A.L. Bozic, Photo catalytic treatment of diclofenac in water; comparison of slurry and immobilized processes, Desal. Water Treat., 81 (2017) 170–185.
  44. S. Salaeh, M. Kovacic, D. Kosir, H. Kusic, U.L. Stangar, D.D. Dionysiou, A.L. Bozic, Reuse of TiO2-based catalyst for solar driven water treatment; thermal and chemical reactivation, J. Photochem. Photobiol. A., 333 (2017) 117–129.
  45. M. Kovacic, N. Kopcic, H. Kusic, U.L. Stangar, D.D. Dionysiou, A.L. Bozic, Reactivation and reuse of TiO2-SnS2 composite catalyst for solar driven water treatment, Environ. Sci. Poll. Res., 25 (2018) 2538–2551.
  46. N. Miranda-García, S. Suárez, M.I. Maldonado, S. Malato, B. Sánchez, Regeneration approaches for TiO2 immobilized photo catalyst used in the elimination of emerging contaminants in water, Catal. Today, 230 (2014) 27–34.
  47. V.G. Gandhi, M.K. Mishra, P.A. Joshi, A study on deactivation and regeneration of titanium dioxide during photo catalytic degradation of phtalic acid, J. Ind. Eng. Chem., 18 (2012) 1902–1907.