References
- J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi,
M. Anpo, D.W. Bahnemann, Understanding TiO2 photo
catalysis: mechanisms and materials. Chem. Rev., 114 (2014)
9919–9986.
- P. Pichat, Photo catalysis and water purification: from Fundamentals
to Recent Applications, Wiley, Germany, 2013.
- M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments
in photo catalytic water treatment technology: a review,
Water Res., 44 (2010) 2997–3027.
- M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G.
Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea,
M.H. Entezari, D.D. Dionysiou, A review on the visible light
active titanium dioxide photo catalysts for environmental
applications, Appl. Catal., B 125 (2012) 331–349.
- R. Fagan, D.E. McCormack, D.D. Dionysiou, S.C. Pillai A
review of solar and visible light active TiO2 photo catalysis for
treating bacteria, cyanotoxins and contaminants of emerging
concern, Mat. Sci. Semicon. Proc., 42 (2016) 2–14.
- S. Mozia, P. Brozek, J. Przepiorski, B. Tryba, A.W. Morawski,
Immobilized TiO2 for phenol degradation in a pilot-scale
photo catalytic reactor, J. Nanomater., 2012 (2012) 1–10.
- K. Naeem, F. Ouyang, Influence of supports on photo catalytic
degradation of phenol and 4-chlorophenol in aqueous suspensions
of titanium dioxide, J. Environ. Sci., 25 (2013) 399–404.
- F. Li, S. Sun, Y. Jiang, M. Xia, M. Sun, B. Xue, Photo degradation
of an azo dye using immobilized nanoparticles of TiO2 supported
by natural porous mineral, J. Hazard. Mater., 152 (2008)
1037–1044.
- S. Salaeh, D.J. Perisic, M. Biosic, H. Kusic, S. Babic, U. Lavrencic
Stangar, D.D. Dionysiou, A. Loncaric Bozic, Diclofenac removal
by solar assisted photo calaysis using TiO2-based zeolite catalyst;
mechanisms, pathways and environmental aspects,
Chem. Eng. J., 304 (2016) 289–302.
- P. Lei, F. Wang, X. Gao, Y. Ding, S. Zhang, J. Zhao, S. Liu, M.
Yang, Immobilization of TiO2 nanoparticles in polymeric substrates
by chemical bonding for multi-cycle photo degradation
of organic pollutants, J. Hazard. Mater., 227–228 (2012)
185–194.
- S. Liu, J. Zhu, Q. Yang, P. Xu, J. Ge, X. Guo, Preparation of SnO2–TiO2/fly ash cenospheres and its application in phenol degradation,
Photochem. Photobiol., 91 (2015) 1302–1308.
- Y.T. Yu, Synthesis of nanocrystalline TiO2-coated coal fly ash
for photo catalyst, Korean J. Chem. Eng., 20 (2003) 850–854.
- M.R. Senapati, Fly ash from thermal power plants – waste
management and overview, Current Sci., 100 (2011) 1791–1794.
- EC, Implementation of the Circular Economy Action Plan, http://ec.europa.eu/environment/circular-economy/index_en.htm (accessed on March 5, 2018).
- EU, Directive 2013/39/EU of the European Parliament and of
the Council amending Directives 2000/60/EC and 2008/105/
EC as regards priority substances in the field of water policy,
Off. J. Eur. Commun., 226 (2013) 1–17.
- JCR Technical Report, Development of the First Watch List
under the Environmental Quality Standards Directive. https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/development-first-watch-list-under-environmental-quality-standards-directive (accessed on Dec 20,
2017).
- D. Bhatia, N.R. Sharma, J. Singh, R.S. Kanwar, Biological methods
for textile dye removal from wastewater: A review, Crit.
Rev. Environ. Sci. Technol., 47 (2017) 1836–1876.
- K. Hunger, Industrial Dyes; Chemistry, Properties, Application,
Wiley-VCH, Weinheim, Germany, 2002.
- H. Kusic, N. Koprivanac, A. Loncaric Bozic, Environmental
aspects on the photo degradation of reactive triazine dyes in
aqueous media, J. Photochem. Photobiol., A 252 (2013) 131–144.
- Y. Verma, Acute toxicity assessment of textile dyes and textile
and dye industrial effluents using Daphnia magna bioassay,
Toxicol. Ind. Health, 24(7) (2008) 491–500.
- R. Lopez, R. Gomez, Band-gap energy estimation from diffuse
reflectance measurements on sol–gel and commercial TiO2: a
comparative study, J. Sol-Gel Sci. Technol., 61 (2012) 1–7.
- K. Koci, L. Obalova, L. Matejova, D. Placha, Z. Lacny, J.
Jirkovsky, O. Solcova, Effect of TiO2 particle size on the photo
catalytic reduction of CO2, Appl. Catal., B 89 (2009) 494–502.
- H. Uppal, J. Hemlata, N. Tawale, Singh Zinc peroxide functionalized
synthetic graphite: An economical and efficient adsorbent
for adsorption of arsenic (III) and (V), J. Environ. Chem.
Eng., 4 (2016) 2964–2975.
- M. Kovacic, H. Kusic, M. Fanetti, U.L. Stangar, M. Valant, D.D.
Dionysiou, A.L. Bozic, TiO2-SnS2 nanocomposites; solar active
photo catalytic materials for water treatment, Environ. Sci.
Poll. Res., 24 (2017) 19965–19979.
- R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response
Surface Methodology: Process and Product Optimization Using
Designed Experiments, 3rd ed., John Wiley &
Sons, Hoboken,
USA, 2009.
- Z. Sarbak. M. Kramer-Wachowiak, Porous structure of waste
fly ashes and their chemical modification, Powder Technol.,
123 (2002) 53–58.
- A. Duta, M. Visa, Simultaneous removal of two industrial dyes
by adsorption and photo catalysis on a fly-ash-TiO2 composite,
J. Photochem. Photobiol. A., 306 (2015) 21–30.
- X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis,
properties, modifications, and applications, Chem. Rev., 107
(2007) 2891–2959.
- D. Yang, H. Li, Z. Zheng, Y. Yuan, J. Zhao, E.R. Waclawik, X.
Ke, H. Zhu, An efficient photo catalyst structure: TiO2(B) nanofibers
with a shell of anatase nanocrystals, J. Am. Chem. Soc.,
131 (2009) 17885–17893.
- C. Zhao, M. Pelaez, D. Dionysiou, S.C. Pillai, J.A. Byrne, K.E.
O’Shea, UV and visible light activated TiO2 photocatalysis of
6-hydroxymethyl uracil, a model compound for the potent cyanotoxin
cylindrospermopsin, Catal. Today, 224 (2014) 70–76.
- M. Kovacic, S. Salaeh, H. Kusic, A. Suligoj, M. Kete, M. Fanetti,
U.L. Stangar, D.D. Dionysiou, A.L. Bozic, Solar-driven photo
catalytic treatment of diclofenac using immobilized TiO2-based zeolite composites, Environ. Sci. Poll. Res., 23 (2016)
17982–17994.
- K. Yetilmezsoy, S. Demirel, R.J. Vanderbei, Response surface
modeling of Pb(II) removal from aqueous solution by Pistacia
vera L.: Box-Behnken experimental design, J. Hazard. Mater.,
171 (2009) 551–562.
- S. Debnath, N. Ballav, H. Nyoni, A. Maity, K. Pillay, Optimization
and mechanism elucidation of the catalytic photo-degradation
of the dyes Eosin Yellow (EY) and Naphthol blue black
(NBB) by a polyaniline-coated titanium dioxide nanocomposite,
Appl. Catal. B., 163 (2015) 330–342.
- M. Dopar, H. Kusic, N. Koprivanac, Treatment of simulated
industrial wastewater by photo-Fenton process: Part I. The
optimization of process parameters using design of experiments
(DOE), Chem. Eng. J., 173(2) (2011) 267–279.
- N.T. Boncagni, J.M. Otaegui, E. Warner, T. Curran, J. Ren, M.
M. Fidalgo de Cortalezzi, Exchange of TiO2 nanoparticles
between streams and stream beds, Environ. Sci. Technol., 43
(2009) 7699–7705.
- D.J. Perisic, M. Kovacic, H. Kusic, U.L. Stangar, V. Marin, A.L.
Bozic, The comparative analysis of UV-C/H2O2 and UV-A/TiO2 processes for degradation of diclofenac in water, React.
Kinet. Mech. Cat., 118 (2016) 451–462.
- P.K.J. Robertson, J.M.C. Robertson, D.W. Bahnemann, Removal
of microorganisms and their chemical metabolites from water
using semiconductor photo catalysis, J Hazard Mater., 211–212
(2012) 161–171.
- T. Fotiou, T.M. Triantis, T. Kaloudis, A. Hiskia, Evaluation
of the photo catalytic activity of TiO2 based catalysts for the
degradation and mineralization of cyanobacterial toxins and
water off-odor compounds under UV-A, solar and visible light,
Chem. Eng. J., 261 (2015) 17–26.
- U.I. Gaya, Heterogeneous photo catalysis using inorganic
semiconductor solids, Springer, Heidelberg, Germany, 2014.
- L. Wojnárovits, T. Pálfi, E. Takács, Kinetics and mechanism of
azo dye destruction in advanced oxidation processes, Radiat.
Phys. Chem., 76 (2007) 1497–1501.
- C. Luo, H. Wang, W. Dong, X. Zhang, Theoretical investigation
on the mechanism of the OH-initiated degradation process of
Reactive Red 2 azo dye, RSC Adv., 7 (2017) 41799–41811.
- M.J. Farré, M.I. Franch, J.A. Ayllón, J. Peral, X. Domènech, Biodegradability
of treated aqueous solutions of biorecalcitrant
pesticides by means of photo catalytic ozonation, Desalination,
211 (2007) 22–33.
- D.J. Perisic, A. Belet, H. Kusic, U.L. Stangar, A.L. Bozic, Photo
catalytic treatment of diclofenac in water; comparison of slurry
and immobilized processes, Desal. Water Treat., 81 (2017) 170–185.
- S. Salaeh, M. Kovacic, D. Kosir, H. Kusic, U.L. Stangar, D.D.
Dionysiou, A.L. Bozic, Reuse of TiO2-based catalyst for solar
driven water treatment; thermal and chemical reactivation, J.
Photochem. Photobiol. A., 333 (2017) 117–129.
- M. Kovacic, N. Kopcic, H. Kusic, U.L. Stangar, D.D. Dionysiou,
A.L. Bozic, Reactivation and reuse of TiO2-SnS2 composite catalyst
for solar driven water treatment, Environ. Sci. Poll. Res., 25
(2018) 2538–2551.
- N. Miranda-García, S. Suárez, M.I. Maldonado, S. Malato, B.
Sánchez, Regeneration approaches for TiO2 immobilized photo
catalyst used in the elimination of emerging contaminants in
water, Catal. Today, 230 (2014) 27–34.
- V.G. Gandhi, M.K. Mishra, P.A. Joshi, A study on deactivation
and regeneration of titanium dioxide during photo catalytic
degradation of phtalic acid, J. Ind. Eng. Chem., 18 (2012) 1902–1907.