References

  1. R. Fabris, C.W. Chow, M. Drikas, B. Eikebrokk, Comparison of NOM character in selected Australian and Norwegian drinking waters, Water Res., 42 (2008) 4188–4196.
  2. Q. Zheng, X. Yang, W. Deng, X.C. Le, X.-F. Li, Characterization of natural organic matter in water for optimizing water treatment and minimizing disinfection by-product formation, J. Environ. Sci., 42 (2016) 1–5.
  3. A. Matilainen, M. Vepsäläinen, M. Sillanpää, Natural organic matter removal by coagulation during drinking water treatment: a review, Adv. Colloid Interf. Sci., 159 (2010) 189–197.
  4. M.H. Ehrampoush, M. Miri, S.M. Momtaz, M.T. Ghaneian, L. Rafati, H. Karimi, S. Rahimi, Selecting the optimal process for the removal of reactive red 198 dye from textile wastewater using analytical hierarchy process (AHP), Desal. Water Treat., 57 (2016) 27237–27242.
  5. P. Jardine, J. McCarthy, N. Weber, Mechanisms of dissolved organic carbon adsorption on soil, Soil Sci. Soc. Amer. J., 53 (1989) 1378–1385.
  6. C.A. Murray, S.A. Parsons, Removal of NOM from drinking water: Fenton’s and photo-Fenton’s processes, Chemosphere, 54 (2004) 1017–1023.
  7. A. Mohammadi, S. Nemati, M. Mosaferi, A. Abdollahnejhad, M. Almasian, A. Sheikhmohammadi, Predicting the capability of carboxymethyl cellulose-stabilized iron nanoparticles for the remediation of arsenite from water using the response surface methodology (RSM) model: Modeling and optimization, J. Contam. Hydrol., 203 (2017) 85–92.
  8. H. Nourmoradi, A. Ebrahimi, Y. Hajizadeh, M. A, Application of nanozeolite and nanocarbon for the removal of humic acid from aqueous solutions, Int. J. Pharm. Technol 8 (2016) 14223–14238.
  9. M.A.A. Majid, T. Mahboob, B.G. Mong, N. Jaturas, R.L. Richard, T. Tian-Chye, A. Phimphila, P. Mahaphonh, K.N. Aye, W.L. Aung, Pathogenic waterborne free-living amoebae: An update from selected Southeast Asian countries, PloS One, 12 (2017) e0169448.
  10. A. Mohammadi, M. Miri, A. Ebrahimi, H. Khorsandi, S. Nemati, Monitoring of THMs concentration in isfahan water distribution system and zoning by GIS, a case study in the center of Iran, Iran. J. Health Safety Environ., 3 (2016) 421–427.
  11. M.H. Dehghani, M. Faraji, A. Mohammadi, H. Kamani, Optimization of fluoride adsorption onto natural and modified pumice using response surface methodology: Isotherm, kinetic and thermodynamic studies, Korean J. Chem. Eng., 34 (2017) 454–462.
  12. A. Ebrahimi, E. Taheri, A. Pashaee, M. Mahdavi, The effectiveness of polyaluminum ferric chloride (PAFCl) for turbidity and color removal from Isfahan raw water, Desal. Water Treat., 55 (2015) 1966–1972.
  13. M. Majlesi, S.M. Mohseny, M. Sardar, S. Golmohammadi, A. Sheikhmohammadi, Improvement of aqueous nitrate removal by using continuous electrocoagulation/electroflotation unit with vertical monopolar electrodes, Sustain. Environ. Res., 26 (2016) 287–290.
  14. A.S. Mohammadi, M. Sardar, M. Almasian, Equilibrum and kinetic studies on the adsorption of penicillin g by chestnut shell, Environ. Eng. Manage. J., 15 (2016) 167–173.
  15. M. Yan, D. Wang, S. You, J. Qu, H. Tang, Enhanced coagulation in a typical North-China water treatment plant, Water Res., 40 (2006) 3621–3627.
  16. A. Mohammadi, B. Bina, A. Ebrahimi, Y. Hajizadeh, M.M. Amin, H. Pourzamani, Effectiveness of nanozeolite modified by cationic surfactant in the removal of disinfection by-product precursors from water solution, Int. J. Environ. Health Eng., 1 (2012) 3.
  17. H. Khorsandi, B. Bina, J. Khorsandi, Evaluation of UV/TiO2 photo-catalytic process for removing humic compounds from water, Polish J. Environ. Stud., 24 (2015).
  18. W. Xu, B. Gao, Y. Wang, Q. Yue, H. Ren, Effect of second coagulant addition on coagulation efficiency, floc properties and residual Al for humic acid treatment by Al13 polymer and polyaluminum chloride (PACl), J. Hazard. Mater., 215 (2012) 129–137.
  19. U. Nobbmann, A. Morfesis, J. Billica, K. Gertig, The role of zeta potential in the optimization of water treatment, 2002.
  20. Y. Zhao, B. Gao, H. Shon, B. Cao, J.-H. Kim, Coagulation characteristics of titanium (Ti) salt coagulant compared with aluminum (Al) and iron (Fe) salts, J. Hazard. Mater., 185 (2011) 1536–1542.
  21. M. Mahdavi, A. Ebrahimi, H. Azarpira, H.R. Tashauoei, A.H. Mahvi, Dataset on the spent filter backwash water treatment by sedimentation, coagulation and ultra filtration, Data in Brief, 15 (2017) 916–921.
  22. M. Mahdavi, M.M. Amin, Y. Hajizadeh, H. Farrokhzadeh, A. Ebrahimi, Removal of different NOM fractions from spent filter backwash water by polyaluminum ferric chloride and ferric chloride, Arab. J. Sci. Eng., 42 (2017) 1497–1504.
  23. A. Ebrahimi, M.M. Amin, H. Pourzamani, Y. Hajizadeh, A.H. Mahvi, M. Mahdavi, M.H.R. Rad, Hybrid coagulation-UF processes for spent filter backwash water treatment: a comparison studies for PAFCl and FeCl3 as a pre-treatment, Environ. Monit. Assess., 189 (2017) 387.
  24. B. Cao, B. Gao, M. Wang, X. Sun, J. Wang, Floc properties of polyaluminum ferric chloride in water treatment: The effect of Al/Fe molar ratio and basicity, J. Colloid Interf. Sci., 458 (2015) 247–254.
  25. H. Khorsandi, A. Mohammadi, S. Karimzadeh, J. Khorsandi, Evaluation of corrosion and scaling potential in rural water distribution network of Urmia, Iran, Desal. Water Treat., 57 (2016) 10585–10592.
  26. N. Khoshnamvand, F.K. Mostafapour, A. Mohammadi, M. Faraji, Response surface methodology (RSM) modeling to improve removal of ciprofloxacin from aqueous solutions in photocatalytic process using copper oxide nanoparticles (CuO/UV), AMB Express, 8 (2018) 48.
  27. A.A. Aghapour, S. Nemati, A. Mohammadi, H. Nourmoradi, S. Karimzadeh, Nitrate removal from water using alum and ferric chloride: a comparative study of alum and ferric chloride efficiency, Environ. Health Eng. Manage. J., 3 (2016) 69–73.
  28. Standard Methods for the Examination of Water and Wastewater, American Public Health Association (APHA): Washington, DC, USA, 2005.
  29. B.L. Rowe, P.L. Toccalino, M.J. Moran, J.S. Zogorski, C.V. Price, Occurrence and potential human-health relevance of volatile organic compounds in drinking water from domestic wells in the United States, Environ. Health Perspect., 115 (2007) 1539.
  30. Y. Zhang, S. Li, X. Wang, X. Li, Coagulation performance and mechanism of polyaluminum ferric chloride (PAFC) coagulant synthesized using blast furnace dust, Separ. Purif. Technol., 154 (2015) 345–350.
  31. Q.K. Beg, V. Sahai, R. Gupta, Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor, Process Biochem., 39 (2003) 203–209.
  32. R.L. Mason, R.F. Gunst, J.L. Hess, Statistical Design and Analysis of Experiments: With Applications to Engineering and Science, John Wiley & Sons, 2003.
  33. J.K. Edzwald, J.E. Van Benschoten, Aluminum coagulation of natural organic matter, in: Chemical Water and Wastewater Treatment, Springer, 1990, pp. 341–359.
  34. Y. Xu, T. Chen, F. Cui, W. Shi, Effect of reused alum-humic-flocs on coagulation performance and floc characteristics formed by aluminum salt coagulants in humic-acid water, Chem. Eng. J., 287 (2016) 225–232.
  35. Y. Sun, C. Zhu, H. Zheng, W. Sun, Y. Xu, X. Xiao, Z. You, C. Liu, Characterization and coagulation behavior of polymeric aluminum ferric silicate for high-concentration oily wastewater treatment, Chem. Eng. Res. Design, 119 (2017) 23–32.
  36. A.A. Aghapour, S. Nemati, A. Mohammadi, H. Jahani, S. Karimzadeh, Removal of humic acid from water resources using Al and Fe salts during conventional coagulation, Urmia Med. J., 27 (2016) 240–247.
  37. B.-Y. Gao, Y.-B. Chu, Q.-Y. Yue, B.-J. Wang, S.-G. Wang, Characterization and coagulation of a polyaluminum chloride (PAC) coagulant with high Al 13 content, J. Environ. Manage., 76 (2005) 143–147.
  38. Guidelines for drinking-water quality, Geneva: World Health Organization, 2011.
  39. USEPA, Drinking Water Contaminants – Standards and Regulations | US EPA, in, 2017.
  40. T.F. Marhaba, A.D. Borgaonkar, K. Punburananon, Principal component regression model applied to dimensionally reduced spectral fluorescent signature for the determination of organic character and THM formation potential of source water, J. Hazard. Mater., 169 (2009) 998–1004.
  41. M.M. Amin, M. Safari, A. Maleki, M. Ghasemian, R. Rezaee, H. Hashemi, Feasibility of humic substances removal by enhanced coagulation process in surface water, Int. J. Environ. Health Eng., 1 (2012) 29.