References

  1. A. Mohammadzadeh, M. Ramezani, A.M. Ghaedi, Synthesis and characterization of Fe2O3–ZnO–ZnFe2O4/carbon nanocomposite and its application to removal of bromophenol blue dye using ultrasonic assisted method: Optimization by response surface methodology and genetic algorithm, J. Taiwan Inst. Chem. Eng., 59 (2016) 275–284.
  2. D. Robati, B. Mirza, R. Ghazisaeidi, M. Rajabi, O. Moradi, I. Tyagi, et al, Adsorption behavior of methylene blue dye on nanocomposite multi-walled carbon nanotube functionalized thiol (MWCNT-SH) as new adsorbent, J. Mol. Liq., 216 (2016) 830–835.
  3. M. Roosta, M. Ghaedi, A. Daneshfar, R. Sahraei, A. Asghari, Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology, Ultrason. Sonochem., 21 (2014) 242–252.
  4. A. Asfaram, M. Ghaedi, S. Hajati, M. Rezaeinejad, A. Goudarzi, MK. Purkait, Rapid removal of Auramine-O and Methylene blue by ZnS: Cu nanoparticles loaded on activated carbon: a response surface methodology approach, J. Taiwan Inst. Chem. Eng., 53 (2015) 80–91.
  5. V. Sharma, P. Rekha, P. Mohanty, Nanoporous hyper-cross linked polyaniline: An efficient adsorbent for the adsorptive removal of cationic and anionic dyes, J. Mol. Liq., 222 (2016) 1091–1100.
  6. C. Li, J. Cui, F. Wang, W. Peng, Y. He, Adsorption removal of Congo red by epichlorohydrin-modified cross-linked chitosan adsorbent, Desal. Water. Treat., 57(30) (2016) 14060– 14066.
  7. H. Karimi, M. Ghaedi, Application of artificial neural network and genetic algorithm to modeling and optimization of removal of methylene blue using activated carbon, J. Ind. Eng. Chem., 20 (2014) 2471–2476.
  8. A. Asfaram, M. Ghaedi, M.A. Azqhandi, A. Goudarzi, M. Dastkhoon, Statistical experimental design, least squares-support vector machine (LS-SVM) and artificial neural network (ANN) methods for modeling the facilitated adsorption of methylene blue dye, RSC Adv., 46 (2016) 40502–40516.
  9. A. Bhatnagar, E. Kumar, M. Sillanpää, Nitrate removal from water by nano-alumina: Characterization and sorption studies, Chem. Eng. J., 163 (2010) 317–323.
  10. ZA. Sutirman, M.M. Sanagi, K.J.A. Karim, W.A.W. Ibrahim, Preparation of methacrylamide-functionalized cross linked chitosan by free radical polymerization for the removal of lead ions, Carbohydr. Polym., 151 (2016) 1091–1099.
  11. J. Xie, C. Li, L. Chi, D. Wu, Chitosan modified zeolite as a versatile adsorbent for the removal of different pollutants from water, Fuel, 103 (2013) 480–485.
  12. Y. Haldorai, J.-J. Shim, An efficient removal of methyl orange dye from aqueous solution by adsorption onto chitosan/MgO composite: A novel reusable adsorbent, Appl. Surf. Sci., 292 (2014) 447–453.
  13. S. Sugashini, K.M.S. Begum, A. Ramalingam, Removal of Cr (VI) ions using Fe-loaded chitosan carbonized rice husk composite beads (Fe-CCRCB): Experiment and quantum chemical calculations, J. Mol. Liq., 208 (2015) 380–387.
  14. P. Hou, C. Shi, L. Wu, X. Hou, Chitosan/hydroxyapatite/Fe3O4 magnetic composite for metal-complex dye AY220 removal: recyclable metal-promoted Fenton-like degradation, Microchem. J., 128 (2016) 218–225.
  15. Q. Qin, J. Ma, K. Liu, Adsorption of anionic dyes on ammonium-functionalized MCM-41, J. Hazard. Mater., 162 (2009) 133–139.
  16. F.N. Azad, M. Ghaedi, A. Asfaram, A. Jamshidi, G. Hassani, A. Goudarzi, M.H.A. Azqhandi, A. Ghaedi, Optimization of the process parameters for the adsorption of ternary dyes by Ni doped FeO(OH)-NWs–AC using response surface methodology and an artificial neural network. RSC Adv., 6 (2016) 19768–19779.
  17. A. Teimouri, S.G. Nasab, N. Vahdatpoor, S. Habibollahi, H. Salavati, A.N. Chermahini, Chitosan/zeolite Y/nano ZrO2 nanocomposite as an adsorbent for the removal of nitrate from the aqueous solution, Int. J. Biol. Macromol., 93 (2016) 254–266.
  18. A. Teimouri, S. Ghanavati Nasab, S. Habibollahi, M. Fazel-Najafabadi, A.N. Chermahini, Synthesis and characterization of a chitosan/montmorillonite/ZrO2 nanocomposite and its application as an adsorbent for removal of fluoride, RSC Adv., 5 (2015) 6771–6781.
  19. S.G. Nasab, A. Semnani, A. Teimouri, H. Kahkesh, T.M. Isfahani, S. Habibollahi, Removal of Congo Red from aqueous solution by hydroxyapatite nanoparticles loaded on zein as an efficient and green adsorbent: response surface methodology and artificial neural network-genetic algorithm, J. Polym. Environ., (2018) 1–21.
  20. M. Vallet-Regi, A. Ramila, R. Del Real, J. Pérez-Pariente, A new property of MCM-41: drug delivery system, Chem. Mater., 13 (2001) 308–311.
  21. M. Grün, K.K. Unger, A. Matsumoto, K. Tsutsumi, Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology, Microporous Meso porous Mater., 27 (1999) 207–216.
  22. J. Zhang, Q. Zhou, L. Kinetic, Isotherm, and thermodynamic studies of the adsorption of methyl orange from aqueous solution by chitosan/alumina composite, J. Chem. Eng. Data., 57 (2012) 412–419.
  23. W.M. Golie, S. Upadhyayula, Continuous fixed-bed column study for the removal of nitrate from water using chitosan/alumina composite, J. Water Process Eng., 12 (2016) 58–65.
  24. Y. Guo, D. Liu, Y. Zhao, B. Gong, Y. Guo, W. Huang, Synthesis of chitosan-functionalized MCM-41-A and its performance in Pb (II) removal from synthetic water, J. Taiwan Inst. Chem. Eng., 71 (2017) 537–545.
  25. S. Hassani, M. Shirani, A. Semnani, M. Hassani, Removal of Congo red by magnetic nano-alumina using response surface methodology and artificial neural network, Desal. Water Treat., 62 (2017) 241–251.
  26. A.M. Ghaedi, M. Ghaedi, A.R. Pouranfard, A. Ansari, Z. Avazzadeh, A. Vafaei, I. Tyagi, S. Agarwal, V.K. Gupta, Adsorption of triamterene on multi-walled and single-walled carbon nanotubes: Artificial neural network modeling and genetic algorithm optimization, J. Mol. Liq., 216 (2016) 654–665.
  27. E.A. Dil, M. Ghaedi, A. Ghaedi, A. Asfaram, M. Jamshidi, M.K. Purkait, Application of artificial neural network and response surface methodology for the removal of crystal violet by zinc oxide nanorods loaded on activate carbon: kinetics and equilibrium study, J. Taiwan Inst. Chem. Eng., 59 (2016) 210–220.
  28. E.A. Dil, M. Ghaedi, A. Asfaram, A. Goudarzi, Synthesis and characterization of ZnO-nanorods loaded onto activated carbon and its application for efficient solid phase extraction and determination of BG from water samples by micro-volume spectrophotometry, New J. Chem., 39 (2015) 9407–9414.
  29. A. Asfaram, M. Ghaedi, S. Hajati, A. Goudarzi, A.A. Bazrafshan, Simultaneous ultrasound-assisted ternary adsorption of dyes onto copper-doped zinc sulfide nanoparticles loaded on activated carbon: optimization by response surface methodology, Spectrochim, Acta A Mol. Biomol. Spectrosc., 145 (2015) 203–212.
  30. A.M. Elbarbary, M.M. Ghobashy, Phosphorylation of chitosan/HEMA interpenetrating polymer network prepared by γ-radiation for metal ions removal from aqueous solutions, Carbohydr. Polym., 162 (2017) 16–27.
  31. A.C. Pradhan, K. Parida, Facile synthesis of mesoporous composite Fe/Al2O3–MCM-41: an efficient adsorbent/catalyst for swift removal of methylene blue and mixed dyes, J. Mater. Chem., 22 (2012) 7567–7579.
  32. A.A. El-Bindary, A.Z. El-Sonbati, A.A. Al-Sarawy, K.S. Mohamed, M.A. Farid, Removal of hazardous azopyrazole dye from an aqueous solution using rice straw as a waste adsorbent: Kinetic, equilibrium and thermodynamic studies. Spectrochim, Acta A Mol. Biomol. Spectrosc., 136 (2015) 1842–1849.
  33. A. Ahmad, B. Hameed, A. Ahmad, Removal of disperse dye from aqueous solution using waste-derived activated carbon: Optimization study, J. Hazard. Mater., 170 (2009) 612–619.
  34. A. Asfaram, M. Ghaedi, A. Goudarzi, M. Soylak, S.M. Langroodi, Magnetic nanoparticle based dispersive micro-solidphase extraction for the determination of malachite green in water samples: optimized experimental design, New J. Chem., 39 (2015) 9813–9823.
  35. V. Srivastava, Y. Sharma, M. Sillanpää, Response surface methodological approach for the optimization of adsorption process in the removal of Cr (VI) ions by Cu2(OH)2CO3 nanoparticles, Appl. Surf. Sci., 326 (2015) 257–270.
  36. A. Asfaram, M. Ghaedi, S. Agarwal, I. Tyagi, V.K. Gupta, Removal of basic dye Auramine-O by ZnS: Cu nanoparticles loaded on activated carbon: optimization of parameters using response surface methodology with central composite design, RSC Adv., 5 (2015) 18438–18450.
  37. Y.-S. Ho, G. McKay, The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Res., 34 (2000) 735–742.
  38. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, JACS. 40 (1918) 1361–1403.
  39. V. Vadivelan, K.V. Kumar, Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk, J. Colloid Interface Sci., 286 (2005) 90–100.
  40. A. Kareem, N.A. Alrazak, K.H. Aljebori, A.M. Aljeboree, H.L. Algboory, A.F. Alkaim, Removal of methylene blue dye from aqueous solutions by using activated carbon/urea-formaldehyde composite resin as an adsorbent, Int. J. Chem. Sci., 14 (2016) 21–27.
  41. M. Ghaedi, S. Heidarpour, S.N. Kokhdan, R. Sahraie, A. Daneshfar, B. Brazesh, Comparison of silver and palladium nanoparticles loaded on activated carbon for efficient removal of Methylene blue: Kinetic and isotherm study of removal process, Powder Technol., 228 (2012) 18–25.
  42. B. Ismail, S.T. Hussain, S. Akram, Adsorption of methylene blue onto spinel magnesium aluminate nanoparticles: adsorption isotherms, kinetic and thermodynamic studies, Chem. Eng. J., 219 (2013) 395–402.
  43. S. Hashemian, M.K. Ardakani, H. Salehifar, Kinetics and thermodynamics of adsorption methylene blue onto tea waste/CuFe2O4 composite. Am, J. Analyt. Chem., 4 (2013) 1–11.
  44. S. Hashemian, M. Monshizadeh, Removal of methylene blue from aqueous solution by nano LaFeO3 particles. Main Group Chem., 12 (2013) 113–124.
  45. F. Ferrero, Dye removal by low cost adsorbents: Hazelnut shells in comparison with wood sawdust, J. Hazard. Mater., 142 (2007) 144–152.
  46. M. Shirani, A. Semnani, H. Haddadi, S. Habibollahi, Optimization of simultaneous removal of methylene blue, crystal violet, and fuchsine from aqueous solutions by magnetic nay zeolite composite, Water Air Soil Pollut., 225 (2014) 2054–2062.
  47. M.-Y. Chang, R.-S. Juang, Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay, J. Colloid Interface Sci., 278 (2004) 18–25.
  48. S. Saber-Samandari, S. Saber-Samandari, N. Nezafati, K. Yahya, Efficient removal of lead (II) ions and methylene blue from aqueous solution using chitosan/Fe-hydroxyapatite nanocomposite beads, J. Environ. Manage., 146 (2014) 481–490.
  49. Y. Bulut, H. Karaer, Adsorption of methylene blue from aqueous solution by cross linked chitosan/bentonite composite, J. Dispersion Sci. Technol., 36 (2015) 61–67.
  50. X. Xiao, F. Zhang, Z. Feng, S. Deng, Y. Wang, Adsorptive removal and kinetics of methylene blue from aqueous solution using NiO/MCM-41 composite, Physica. E. Low Dimens. Syst. Nanostruct., 65 (2015) 4–12.
  51. Y. Ho, J. Ng, G. McKay, G. McKay Kinetics of pollutant sorption by biosorbents. Separation and purification methods, 29 (2000) 189–232.
  52. Y.-S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  53. V. Kumar, Adsorption kinetics and isotherms for the removal of rhodamine B dye and Pb2+ ions from aqueous solutions by a hybrid ion-exchanger, Arab. J. Chem., 2016.
  54. M.Y. Nassar, T.Y. Mohamed, I.S. Ahmed, I. Samir, MgO nanostructure via a sol-gel combustion synthesis method using different fuels: an efficient nano-adsorbent for the removal of some anionic textile dyes, J. Mol. Liq., 225 (2017) 730–740.
  55. M.Y. Nassar, M.M. Moustafa, M.M. Taha, Hydrothermal tuning of the morphology and particle size of hydrozincite nanoparticles using different counterions to produce nanosized ZnO as an efficient adsorbent for textile dye removal, RSC Adv., 48 (2016) 42180–42195.
  56. Y. Liu, W. Chen, H.-I. Kim, Removal of lead and nickel ions from wastewater by genipin cross linked chitosan/poly (ethylene glycol) films, J. Macromol. Sci., 49 (2012) 242–250.