References

  1. S. Ji, Y. Ren, A. Buekens, T. Chen, S. Lu, K. Cen, X. Li, Treating PCDD/Fs by combined catalysis and activated carbon adsorption, Chemosphere, 102 (2014) 31–36.
  2. F. Yu, Y. Li, S. Han, J. Ma, Adsorptive removal of antibiotics from aqueous solution using carbon materials, Chemosphere, 153 (2016) 365–385.
  3. F. Zietzschmann, C. Stützer, M. Jekel, Granular activated carbon adsorption of organic micro-pollutants in drinking water and treated wastewater–aligning breakthrough curves and capacities, Water Res., 92 (2016) 180–187.
  4. F. Di Natale, A. Erto, A. Lancia, D. Musmarra, Equilibrium and dynamic study on hexavalent chromium adsorption onto activated carbon, J. Hazard. Mater., 281 (2015) 47–55.
  5. T.F. de Oliveira, B. Cagnon, O. Chedeville, H. Fauduet, Removal of a mix of endocrine disrupters from different natural matrices by ozone/activated carbon coupling process, Desal. Wat. Treat., 52 (2014) 4395–4403.
  6. Y. Huang, C. Cui, D. Zhang, L. Li, D. Pan, Heterogeneous catalytic ozonation of dibutyl phthalate in aqueous solution in the presence of iron-loaded activated carbon, Chemosphere, 119 (2015) 295–301.
  7. J. Xiao, Q. Yue, B. Gao, Y. Sun, J. Kong, Y. Gao, Q. Li, Y. Wang, Performance of activated carbon/nanoscale zero-valent iron for removal of trihalomethanes (THMs) at infinitesimal concentration in drinking water, Chem. Eng. J., 253 (2014) 63–72.
  8. F. Zhou, C. Lu, Y. Yao, L. Sun, F. Gong, D. Li, K. Pei, W. Lu, W. Chen, Activated carbon fibers as an effective metal-free catalyst for peracetic acid activation: implications for the removal of organic pollutants, Chem. Eng. J., 281 (2015) 953–960.
  9. P. Nebout, B. Cagnon, S. Delpeux, A.D. Giusto, O. Chedeville, Comparison of the efficiency of adsorption, ozonation, and ozone/activated carbon coupling for the removal of pharmaceuticals from water, J. Environ. Eng., 142 (2015) 04015074.
  10. P.C.C. Faria, J.J.M. Órfão, M.F.R. Pereira, Ozone decomposition in water catalyzed by activated carbon: influence of chemical and textural properties, Ind. Eng. Chem. Res., 45 (2006) 2715–2721.
  11. S. Yang, X. Yang, X. Shao, R. Niu, L. Wang, Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature, J. Hazard. Mater., 186 (2011) 659–666.
  12. Y.C. Lee, S.L. Lo, J. Kuo, C.P. Huang, Promoted degradation of perfluorooctanic acid by persulfate when adding activated carbon, J. Hazard. Mater., 261 (2013) 463–469.
  13. W. Chu, D. Yao, N. Gao, T. Bond, M.R. Templeton, The enhanced removal of carbonaceous and nitrogenous disinfection by-product precursors using integrated permanganate oxidation and powdered activated carbon adsorption pretreatment, Chemosphere, 141 (2015) 1–6.
  14. B. Jeong, M.S. Oh, H.M. Park, E.J. Kim, S.W. Hong, Elimination of microcystin-LR and residual Mn species using permanganate and powdered activated carbon: Oxidation products and pathways, Water Res., 114 (2017) 189–199.
  15. S.W. Lee, S.M. Bak, C.W. Lee, C. Jaye, D.A. Fischer, B.K. Kim, Structural changes in reduced graphene oxide upon MnO2 deposition by the redox reaction between carbon and permanganate ions, J. Phys. Chem. C, 118 (2014) 2834–2843.
  16. H. Yue, X. Huang, Y. Yang, Preparation and electrochemical performance of manganese oxide/carbon nanotubes composite as a cathode for rechargeable lithium battery with high power density, Mater. Lett., 62 (2008) 3388–3390.
  17. X. Zhao, J. Ma, J. Jiang, Y. Bao, H. Liu, Phenols and anilines degradation by permanganate in the absence/presence of carbon nanotubes: oxidation and dehalogenation, Sep. Purif. Technol., 170 (2016) 344–352.
  18. C. Jiang, P. Zhang, B. Zhang, J. Li, M. Wang, Facile synthesis of activated carbon-supported porous manganese oxide via in situ reduction of permanganate for ozone decomposition, Ozone Sci. Eng., 35 (2013) 308–315.
  19. N. Kano, M. Pang, Y. Deng, H. Imaizumi, Adsorption of rare earth elements (REEs) onto activated carbon modified with potassium permanganate (KMnO4), J. Appl. Solution Chem. Model., 6 (2017) 51–61.
  20. S. Shin, J. Jang, S.H. Yoon, I. Mochida, A study on the effect of heat treatment on functional groups of pitch based activated carbon fiber using FTIR, Carbon, 35 (1997) 1739–1743.
  21. R. Chen, J.J. Pignatello, Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds, Environ. Sci. Technol., 31 (1997) 2399–2406.
  22. G. Fang, J. Gao, D.D. Dionysiou, C. Liu, D.M. Zhou, Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs, Environ. Sci. Technol., 47 (2013) 4605–4611.
  23. J. Jiang, S.Y. Pang, J. Ma, H.L. Liu, Oxidation of phenolic endocrine disrupting chemicals by potassium permanganate in synthetic and real waters, Environ. Sci. Technol., 46 (2012) 1774–1781.
  24. R.D. Vidic, M.T. Suidan, Role of dissolved oxygen on the adsorptive capacity of activated carbon for synthetic and natural organic matter, Environ. Sci. Technol., 25 (1991) 1612–1618.
  25. A.C. de Oliveira Pimenta, J.E. Kilduff, Oxidative coupling and the irreversible adsorption of phenol by graphite, J. Colloid Interface Sci., 293 (2006) 278–289.
  26. R.D. Vidic, C.H. Tessmer, L.J. Uranowski, Impact of surface properties of activated carbons on oxidative coupling of phenolic compounds, Carbon, 35 (1997) 1349–1359.
  27. R.D. Vidic, M.T. Suidan, R.C. Brenner, Oxidative coupling of phenols on activated carbon: impact on adsorption equilibrium, Environ. Sci. Technol., 27 (1993) 2079–2085.
  28. J. Dec, J.M. Bollag, Effect of various factors on dehalogenation of chlorinated phenols and anilines during oxidative coupling, Environ. Sci. Technol., 29 (1995) 657–663.
  29. J. Dec, J.M. Bollag, Dehalogenation of chlorinated phenols during oxidative coupling, Environ. Sci. Technol., 28 (1994) 484–490.
  30. T.M. Grant, C.J. King, Mechanism of irreversible adsorption of phenolic compounds by activated carbons, Ind. Eng. Chem. Res., 29 (1990) 264–271.
  31. J.E. Kilduff, C.J. King, Effect of carbon adsorbent surface properties on the uptake and solvent regeneration of phenol, Ind. Eng. Chem. Res., 36 (1997) 1603–1613.
  32. J.F. Perez-Benito, Autocatalytic reaction pathway on manganese dioxide colloidal particles in the permanganate oxidation of glycine, J. Phys. Chem. C, 113 (2009) 15982–15991.
  33. D. Lin, B. Xing, Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups, Environ. Sci. Technol., 42 (2008) 7254–7259.
  34. A. Dąbrowski, P. Podkościelny, Z. Hubicki, M. Barczak, Adsorption of phenolic compounds by activated carbon—a critical review, Chemosphere, 58 (2005) 1049–1070.
  35. B. Pan, B. Xing, Adsorption mechanisms of organic chemicals on carbon nanotubes, Environ. Sci. Technol., 42 (2008) 9005–9013.
  36. J. Jiang, Y. Gao, S.Y. Pang, X.T. Lu, Y. Zhou, J. Ma, Q. Wang, Understanding the role of manganese dioxide in the oxidation of phenolic compounds by aqueous permanganate, Environ. Sci. Technol., 49 (2014) 520–528.