References

  1. S. Kusakabe, k. Dan, T. Yuki, Hydraulics (in Jpn), Corona Publishing Co., Ltd., Tokyo, 2002.
  2. Y. Iwagaki, Y. Tsuchiya, (II) On the critical tractive force for gravels on a granular bed in turbulent stream, Trans. Japan Soc. Civil Eng., 41 (1956) 22–38.
  3. H. Ødegaard, Innovations in wastewater treatment: the moving bed biofilm process, Water Sci. Technol., 53(9) (2006) 17–33.
  4. E. Rikmann, I. Zekker, T. Tenno, A. Saluste, T. Tenno, Inoculum-free start-up of biofilm- and sludge-based deammonification systems in pilot scale, Int. J. Environ. Sci. Technol., 15 (2018) 133−148.
  5. I. Zekker, E. Rikmann, K. Kroon, A. Mandel, J. Mihkelson, T. Tenno, T. Tenno, Ameliorating nitrite inhibition in a low-temperature nitritation–anammox MBBR using bacterial intermediate nitric oxide, Int. J. Environ. Sci. Technol., 14(11) (2017) 2343–2356.
  6. L. Daija, A. Selberg, E. Rikmann, I. Zekker, T. Tenno, T. Tenno, The influence of lower temperature, influent fluctuations and long retention time on the performance of an upflow mode laboratory-scale septic tank, Desal. Water Treat., 57(40) (2016) 18679–18687.
  7. T. Tenno, E. Rikmann, I. Zekker, T. Tenno, L. Daija, A. Mashirin, Modelling equilibrium distribution of carbonaceous ions and molecules in a heterogeneous system of CaCO3-water-gas, Proc. Estonian Acad. Sci., 65(1) (2016) 68.
  8. E. Rikmann, I. Zekker, M. Tomingas, P. Vabamäe, K. Kroon, A. Saluste, T. Tenno, A. Menert, L. Loorits, S.S. dC Rubin, Comparison of sulfate-reducing and conventional Anammox upflow anaerobic sludge blanket reactors, J. Biosci. Bioeng., 118(4) (2014) 426–433.
  9. I. Zekker, E. Rikmann, A. Mandel, K. Kroon, A. Seiman, J. Mihkelson, T. Tenno, T. Tenno, Step-wise temperature decreasing cultivates a biofilm with high nitrogen removal rates at 9°C in short-term anammox biofilm tests, Environ. Technol., 37(15) (2016) 1933–1946.
  10. M. Raudkivi, I. Zekker, E. Rikmann, P. Vabamäe, K. Kroon, T. Tenno, Nitrite inhibition and limitation – the effect of nitrite spiking on anammox biofilm, suspended and granular biomass, Water Sci. Technol., 75(2) (2017) 313–321.
  11. H.A. Einstein, Formulas for the transportation of bed load, Trans. ASCE Paper, 2140 (1942) 561–597.
  12. Y. Iwagaki, Hydrodynamical study on critical tractive force, Trans. Japan Soc. Civil Eng., 41 (1956) 1–21.
  13. F.A. Bombardelli, P.A. Moreno, Exchanges at the bed sediments-water column interface, In: C. Gualtieri, D.T. Mihailovic, Fluid Mechanics of Environmental Interfaces, CRC Press 2012, pp. 221–253.
  14. M. Terashima, H. Yasui, H. Takahashi, Critical tractive velocity and deposition of sponge media in fluidized-bed biofilm reactor (in Jpn), J. Japan Bio. Soc. Water Waste, 48(2) (2012) 45–53.
  15. Y. Tsuji, T. Kawaguchi, T. Tanaka, Discrete particle simulation of two-dimensional fluidized bed, Powder Technol., 77(1) (1993) 79–87.
  16. C.T. Crowe, J.D. Schwarzkopf, M. Sommerfeld, Y. Tsuji, Multiphase Flows with Droplets and Particles, CRC press, 2011.
  17. M. So, D. Naka, R. Goel, H. Yasui, Model development of a sponge carrier process using CFD-DEM with permeable particles, J. Water Environ. Technol., 10(2) (2012) 193–204.
  18. G.M. Fair, J.C. Geyer, D.A. Okun, Water and Wastewater Engineering, Water Purification and Wastewater Treatment and Disposal, John Wiley and Sons, Inc., New York, 1968.
  19. Z. Abbasi, A. Molaei Dehkordi, F. Abbasi, Numerical investigation of effects of uniform magnetic field on heat transfer around a sphere, Int. J. Heat Mass Transfer, 114 (2017) 703– 714.
  20. V. Parisien, D. Pjontek, C.A. McKnight, J. Wiens, A. Macchi, Impact of catalyst density distribution on the fluid dynamics of an ebullated bed operating at high gas holdup conditions, Chem. Eng. Sci., 170 (2017) 491–500.
  21. R. Naveh, N.M. Tripathi, H. Kalman, Experimental pressure drop analysis for horizontal dilute phase particle-fluid flows, Powder Technol., 321 (2017) 355–368.
  22. A.A. Bhuiyan, A.S. Blicblau, J. Naser, Co-firing of biomass and slagging in industrial furnace: A review on modelling approach, J. Energy Inst., 90(6) (2017) 838–854.
  23. N. Paul, S. Biggs, J. Shiels, R.B. Hammond, M. Edmondson, L. Maxwell, D. Harbottle, T.N. Hunter, Influence of shape and surface charge on the sedimentation of spheroidal, cubic and rectangular cuboid particles, Powder Technol., 322 (Supplement C) (2017) 75–83.
  24. S. Leguizamón, E. Jahanbakhsh, A. Maertens, S. Alimirzazadeh, F. Avellan, A multiscale model for sediment impact erosion simulation using the finite volume particle method, Wear, 392–393 (Supplement C) (2017) 202–212.
  25. M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72(1) (1976) 248–254.
  26. D. Gidaspow, Multiphase flow and fluidization: continuum and kinetic theory descriptions, Academic Press, California, 1994.
  27. S.V. Patankar, D.B. Spalding, Heat and Mass Transfer in Boundary Layers. 2nd ed., TBS The Book Service Ltd., 1970.
  28. A. Shinjo, Principles of Biostatistics (in Japanese), Asakura Publishing Co., Ltd., Tokyo, 2010.
  29. M. So, M. Terashima, R. Goel, H. Yasui, Modelling the bio-clogging of multispecies biofilms in sponge carrier media, J. Water Environ. Technol., 13(3) (2015) 263–278.
  30. M. So, D. Naka, R. Goel, M. Terashima, H. Yasui, Modelling clogging and biofilm detachment in sponge carrier media, Water Sci. Technol., 69(6) (2014) 1298–1303.