References

  1. J.O. Duruibe, M.O.C. Ogwuegbu, J.N. Egwurugwu, Heavy metal pollution and human biotoxic effects, Int. J. Phys. Sci., 2 (2007) 112–118.
  2. R. Singh, N. Gautam, A. Mishra, R. Gupta, Heavy metals and living systems: An overview, Indian J. Pharmacol., 43 (2011) 246–253.
  3. A.İ. Şengil, M. Özacar, Biosorption of Cu(II) from aqueous solutions by mimosa tannin gel, J. Hazard. Mater., 157 (2008) 277–285.
  4. M. Bilal, J.A. Shah, T. Ashfaq, S.M.H. Gardazi, A.A. Tahir, A. Pervez, H. Haroon, Q. Mahmood, Waste biomass adsorbents for copper removal from industrial wastewater - A review, J. Hazard. Mater., 263 (2013) 322–333.
  5. US Environmental Protection Agency, Drinking Water Contaminants – Standards and Regulations. http://water.epa.gov/drink/contaminants/basicinformation/copper.cfm/,2016 (accessed 28.11.16).
  6. Z.N. Garba, I. Bello, A. Galadima, A.Y. Lawal, Optimization of adsorption conditions using central composite design for the removal of copper (II) and lead (II) by defatted papaya seed, Karbala Int. J. Mod. Sci., 2 (2016) 20–28.
  7. G. Xiao, X. Zhang, H. Su, T. Tan, Plate column biosorption of Cu(II) on membrane-type biosorbent (MBS) of Penicillium biomass: Optimization using statistical design methods, Bioresour. Technol., 143 (2013) 490–498.
  8. T. Şahan, H. Ceylan, N. Şahiner, N. Aktaş, Optimization of removal conditions of copper ions from aqueous solutions by Trametes versicolor, Bioresour. Technol., 101(12) (2010) 4520– 4526.
  9. Y. Prasanna Kumar, P. King, V.S.R.K. Prasad, Removal of copper from aqueous solution using Ulva fasciata sp. – A marine green algae, J. Hazard. Mater. B., 137 (2006) 367–373.
  10. A. Özer, G. Gürbüz, A. Çalimli, B.K. Körbahti, Biosorption of copper(II) ions on Enteromorpha prolifera: Application of response surface methodology (RSM), Chem. Eng. J., 146 (2009) 377–387.
  11. R. Kumar, R. Singh, N. Kumar, K. Bishnoi, N.R. Bishnoi, Response surface methodology approach for optimization of biosorption process for removal of Cr(VI), Ni(II) and Zn(II) ions by immobilized bacterial biomass sp. Bacillus brevis, Chem. Eng. J., 146 (2009) 401–407.
  12. R. Singh, R. Chadetrik, R. Kumar, K. Bishnoi, D. Bhatia, A. Kumar, N.R. Bishnoi, N. Singh, Biosorption optimization of lead(II), cadmium(II) and copper(II) using response surface methodology and applicability in isotherms and thermodynamics modeling, J. Hazard. Mater., 174 (2010) 623–634.
  13. S. Uwadiae, E. Aluyor, C. Okieimen, I. Oboh, Statistical design analysis for adsorption of Cu(II) and Pb(II) onto kaolinitic clay, Pac. J. Sci. Technol., 14 (2013) 310–317.
  14. D. Öztürk, T. Şahan, Design and optimization of Cu(II) adsorption conditions from aqueous solutions by low-cost adsorbent pumice with response surface methodology, Pol. J. Environ. Stud., 24 (2015) 1749–1756.
  15. A.R. Cestari, E.F.S. Vieir, I.A. Oliveira, R.E. Bruns, The removal of Cu(II) and Co(II) from aqueous solutions using cross-linked chitosan – Evaluation by the factorial design methodology, J. Hazard. Mater., 143 (2007) 8–16.
  16. N.K.E.M. Yahaya, M.F.P.M. Latiff, I. Abustan, M.A. Ahmad, Effect of preparation conditions of activated carbon prepared from rice husk by ZnCl2 activation for removal of Cu (II) from aqueous solution, IJET, 10 (2010) 28–32.
  17. K. Kalantari, M.B. Ahmad, H.R.F. Masoumi, K. Shameli, M. Basri, R. Khandanlou, Rapid adsorption of heavy metals by Fe3O4/talc nanocomposite and optimization study using response surface methodology, Int. J. Mol. Sci., 15 (2014) 12913–12927.
  18. G. Vázquez, M. Calvo, M.S. Freire, J. González-Alvarez, G. Antorrena, Chestnut shell as heavy metal adsorbent: Optimization study of lead, copper and zinc cations removal, J. Hazard. Mater., 172 (2009) 1402–1414.
  19. W.P. Putra, A. Kamari, S.N.M. Yusoff, C.F. Ishak, A. Mohamed, N. Hashim, I.M. Isa, Biosorption of Cu(II), Pb(II) and Zn(II) ions from aqueous solutions using selected waste materials: Adsorption and characterisation studies, J. Encapsul. Adsorpt. Sci., 4 (2014) 25–35.
  20. S.N.M. Yusoff, A. Kamari, W.P. Putra, C.F. Ishak, A. Mohamed, N. Hashim, I.M. Isa, Removal of Cu(II), Pb(II) and Zn(II) ions from aqueous solutions using selected agricultural wastes: Adsorption and characterisation studies, J. Environ. Prot., 5 (2014) 289–300.
  21. A. Ghosh, K. Sinha, P. Das Saha, Central composite design optimization and artificial neural network modeling of copper removal by chemically modified orange peel, Desal. Water Treat., 51 (2013) 7791–7799.
  22. M.C. Hoces, G.B. García, A.R. Gálvez, A.E. Álvarez, M.Á. Martín-Lara, Biosorption of Cu2+ in a packed bed column by almond shell: optimization of process variables, Desal. Water Treat., 51 (2013) 1954–1965.
  23. Z.Z. Chowdhury, S.M. Zain, R.A. Khan, A.A. Ahmad, K. Khalid, Application of response surface methodology (RSM) for optimizing production condition for removal of Pb(II) and Cu(II) onto kenaf fiber based activated carbon, Res. J. Appl. Sci. Eng. Technol., 4 (2012) 458–465.
  24. T.M. Alslaibi, I. Abustan, M.A. Ahmad, A.A. Foul, Application of response surface methodology (RSM) for optimization of Cu2+, Cd2+, Ni2+, Pb2+, Fe2+, and Zn2+ removal from aqueous solution using microwaved olive stone activated carbon, J. Chem. Technol. Biotechnol., 88 (2013) 2141–2151.
  25. M.A. Acheampong, J.P.C. Pereira, R.J.W. Meulepas, P.N.L. Lensa, Biosorption of Cu(II) onto agricultural materials from tropical regions, J. Chem. Technol. Biotechnol., 86 (2011) 1184–1194.
  26. E. Oguz, M. Ersoy, Removal of Cu2+ from aqueous solution by adsorption in a fixed bed column and Neural Network Modelling, Chem. Eng. J., 164 (2010) 56–62.
  27. D. Bingöl, M. Inal, S. Çetintaş, Evaluation of copper biosorption onto date palm (Phoenix dactylifera L.) seeds with MLR and ANFIS models, Ind. Eng. Chem. Res., 52 (2013) 4429–4435.
  28. R.G. Brereton, Applied Chemometrics for Scientists, John Wiley & Sons, New York, 2007.
  29. D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, New York, 2008.
  30. C. Stalikas, Y. Fiamegos, V. Sakkas, T. Albanis, Developments on chemometric approaches to optimize and evaluate microextraction, J. Chromatogr. A., 1216 (2009) 175–189.
  31. S.H. Hasan, P. Srivastava, M. Talat, Biosorption of Pb(II) from water using biomass of Aeromonas hydrophila: Central composite design for optimization of process variables, J. Hazard. Mater., 168 (2009) 1155–1162.
  32. S.H. Chang, T.T. Teng, N. Ismail, Optimization of Cu(II) extraction from aqueous solutions by soybean-oil-based organic solvent using response surface methodology, Water Air Soil Pollut., 217 (2011) 567–576.
  33. L. Murray, H. Nguyen, Y.F. Lee, M.D. Remmenga, D.W. Smith. Variance inflation factors in regression models with dummy variables, Conference on Applied Statistics in Agriculture, (2012) https://doi.org/10.4148/2475-7772.1034.
  34. W. Yoo, R. Mayberry, S. Bae, K. Singh, Q.P. He, Jr. J.W. Lillard, A Study of effects of multicollinearity in the multivariable analysis, Int. J. Appl. Sci. Technol., 4(5) (2014) 9–19.
  35. MAE and RMSE — Which Metric is Better? https://medium.com/human-in-a-machine-world/mae-and-rmse-which-metric-is-better-e60ac3bde13d (accessed 23.11.18).
  36. G. Hanrahan, K. Lu, Application of factorial and response surface methodology in modern experimental design and optimization, Crit. Rev. Anal. Chem., 36 (2006) 141–151.
  37. W.J. Gong, Y.P. Zhang, S.H. Choi, Y.J. Zhang, K. Lee, Application of response surface methodologies in capillary electrophoresis, Microchim. Acta, 156 (2007) 327–335.
  38. J. Zolgharneina, A. Shahmoradia, J.B. Ghasemi, Comparative study of Box–Behnken, central composite, and Doehlert matrix for multivariate optimization of Pb(II) adsorption onto Robinia tree leaves, J. Chemom., 27 (2013) 12–20.
  39. M. Sedighi, K. Keyvanloo, J. Towfighi, Modeling of thermal cracking of heavy liquid hydrocarbon: Application of kinetic modeling, artificial neural network, and neuro-fuzzy models, Ind. Eng. Chem. Res., 50 (2011) 1536–1547.
  40. S.S. Chong, A.R. Abdul Aziz, S.W. Harun, H. Arof, S. Shamshirband, Application of multiple linear regression, central composite design, and ANFIS models in dye concentration measurement and prediction using plastic optical fiber sensor, Measurement, 74 (2015) 78–86.
  41. T.M. Patel, N.M. Bhatt, RSM and MLR model for equivalent stress prediction of Eicher 11.10 chassis frame: a comparative study, Syst. Technol., 51 (2016) 387–395.