References
- J.O. Duruibe, M.O.C. Ogwuegbu, J.N. Egwurugwu, Heavy
metal pollution and human biotoxic effects, Int. J. Phys. Sci., 2
(2007) 112–118.
- R. Singh, N. Gautam, A. Mishra, R. Gupta, Heavy metals and
living systems: An overview, Indian J. Pharmacol., 43 (2011)
246–253.
- A.İ. Şengil, M. Özacar, Biosorption of Cu(II) from aqueous
solutions by mimosa tannin gel, J. Hazard. Mater., 157 (2008)
277–285.
- M. Bilal, J.A. Shah, T. Ashfaq, S.M.H. Gardazi, A.A. Tahir, A.
Pervez, H. Haroon, Q. Mahmood, Waste biomass adsorbents
for copper removal from industrial wastewater - A review, J.
Hazard. Mater., 263 (2013) 322–333.
- US Environmental Protection Agency, Drinking Water Contaminants –
Standards and Regulations. http://water.epa.gov/drink/contaminants/basicinformation/copper.cfm/,2016
(accessed 28.11.16).
- Z.N. Garba, I. Bello, A. Galadima, A.Y. Lawal, Optimization of
adsorption conditions using central composite design for the
removal of copper (II) and lead (II) by defatted papaya seed,
Karbala Int. J. Mod. Sci., 2 (2016) 20–28.
- G. Xiao, X. Zhang, H. Su, T. Tan, Plate column biosorption of
Cu(II) on membrane-type biosorbent (MBS) of Penicillium biomass:
Optimization using statistical design methods, Bioresour.
Technol., 143 (2013) 490–498.
- T. Şahan, H. Ceylan, N. Şahiner, N. Aktaş, Optimization of
removal conditions of copper ions from aqueous solutions by
Trametes versicolor, Bioresour. Technol., 101(12) (2010) 4520–
4526.
- Y. Prasanna Kumar, P. King, V.S.R.K. Prasad, Removal of copper
from aqueous solution using Ulva fasciata sp. – A marine
green algae, J. Hazard. Mater. B., 137 (2006) 367–373.
- A. Özer, G. Gürbüz, A. Çalimli, B.K. Körbahti, Biosorption
of copper(II) ions on Enteromorpha prolifera: Application of
response surface methodology (RSM), Chem. Eng. J., 146 (2009)
377–387.
- R. Kumar, R. Singh, N. Kumar, K. Bishnoi, N.R. Bishnoi,
Response surface methodology approach for optimization of
biosorption process for removal of Cr(VI), Ni(II) and Zn(II)
ions by immobilized bacterial biomass sp. Bacillus brevis,
Chem. Eng. J., 146 (2009) 401–407.
- R. Singh, R. Chadetrik, R. Kumar, K. Bishnoi, D. Bhatia, A.
Kumar, N.R. Bishnoi, N. Singh, Biosorption optimization of
lead(II), cadmium(II) and copper(II) using response surface
methodology and applicability in isotherms and thermodynamics
modeling, J. Hazard. Mater., 174 (2010) 623–634.
- S. Uwadiae, E. Aluyor, C. Okieimen, I. Oboh, Statistical design
analysis for adsorption of Cu(II) and Pb(II) onto kaolinitic clay,
Pac. J. Sci. Technol., 14 (2013) 310–317.
- D. Öztürk, T. Şahan, Design and optimization of Cu(II) adsorption
conditions from aqueous solutions by low-cost adsorbent
pumice with response surface methodology, Pol. J. Environ.
Stud., 24 (2015) 1749–1756.
- A.R. Cestari, E.F.S. Vieir, I.A. Oliveira, R.E. Bruns, The removal
of Cu(II) and Co(II) from aqueous solutions using cross-linked
chitosan – Evaluation by the factorial design methodology, J.
Hazard. Mater., 143 (2007) 8–16.
- N.K.E.M. Yahaya, M.F.P.M. Latiff, I. Abustan, M.A. Ahmad,
Effect of preparation conditions of activated carbon prepared
from rice husk by ZnCl2 activation for removal of Cu (II) from
aqueous solution, IJET, 10 (2010) 28–32.
- K. Kalantari, M.B. Ahmad, H.R.F. Masoumi, K. Shameli, M. Basri,
R. Khandanlou, Rapid adsorption of heavy metals by Fe3O4/talc
nanocomposite and optimization study using response surface
methodology, Int. J. Mol. Sci., 15 (2014) 12913–12927.
- G. Vázquez, M. Calvo, M.S. Freire, J. González-Alvarez, G.
Antorrena, Chestnut shell as heavy metal adsorbent: Optimization
study of lead, copper and zinc cations removal, J. Hazard.
Mater., 172 (2009) 1402–1414.
- W.P. Putra, A. Kamari, S.N.M. Yusoff, C.F. Ishak, A. Mohamed,
N. Hashim, I.M. Isa, Biosorption of Cu(II), Pb(II) and Zn(II)
ions from aqueous solutions using selected waste materials:
Adsorption and characterisation studies, J. Encapsul. Adsorpt.
Sci., 4 (2014) 25–35.
- S.N.M. Yusoff, A. Kamari, W.P. Putra, C.F. Ishak, A. Mohamed,
N. Hashim, I.M. Isa, Removal of Cu(II), Pb(II) and Zn(II) ions
from aqueous solutions using selected agricultural wastes:
Adsorption and characterisation studies, J. Environ. Prot., 5
(2014) 289–300.
- A. Ghosh, K. Sinha, P. Das Saha, Central composite design
optimization and artificial neural network modeling of copper
removal by chemically modified orange peel, Desal. Water
Treat., 51 (2013) 7791–7799.
- M.C. Hoces, G.B. García, A.R. Gálvez, A.E. Álvarez, M.Á.
Martín-Lara, Biosorption of Cu2+ in a packed bed column by
almond shell: optimization of process variables, Desal. Water
Treat., 51 (2013) 1954–1965.
- Z.Z. Chowdhury, S.M. Zain, R.A. Khan, A.A. Ahmad, K. Khalid,
Application of response surface methodology (RSM) for
optimizing production condition for removal of Pb(II) and
Cu(II) onto kenaf fiber based activated carbon, Res. J. Appl. Sci.
Eng. Technol., 4 (2012) 458–465.
- T.M. Alslaibi, I. Abustan, M.A. Ahmad, A.A. Foul, Application
of response surface methodology (RSM) for optimization
of Cu2+, Cd2+, Ni2+, Pb2+, Fe2+, and Zn2+ removal from aqueous
solution using microwaved olive stone activated carbon, J.
Chem. Technol. Biotechnol., 88 (2013) 2141–2151.
- M.A. Acheampong, J.P.C. Pereira, R.J.W. Meulepas, P.N.L. Lensa,
Biosorption of Cu(II) onto agricultural materials from tropical
regions, J. Chem. Technol. Biotechnol., 86 (2011) 1184–1194.
- E. Oguz, M. Ersoy, Removal of Cu2+ from aqueous solution by
adsorption in a fixed bed column and Neural Network Modelling,
Chem. Eng. J., 164 (2010) 56–62.
- D. Bingöl, M. Inal, S. Çetintaş, Evaluation of copper biosorption
onto date palm (Phoenix dactylifera L.) seeds with MLR and
ANFIS models, Ind. Eng. Chem. Res., 52 (2013) 4429–4435.
- R.G. Brereton, Applied Chemometrics for Scientists, John
Wiley & Sons, New York, 2007.
- D.C. Montgomery, Design and Analysis of Experiments, John
Wiley & Sons, New York, 2008.
- C. Stalikas, Y. Fiamegos, V. Sakkas, T. Albanis, Developments
on chemometric approaches to optimize and evaluate microextraction,
J. Chromatogr. A., 1216 (2009) 175–189.
- S.H. Hasan, P. Srivastava, M. Talat, Biosorption of Pb(II) from
water using biomass of Aeromonas hydrophila: Central composite
design for optimization of process variables, J. Hazard.
Mater., 168 (2009) 1155–1162.
- S.H. Chang, T.T. Teng, N. Ismail, Optimization of Cu(II)
extraction from aqueous solutions by soybean-oil-based
organic solvent using response surface methodology, Water
Air Soil Pollut., 217 (2011) 567–576.
- L. Murray, H. Nguyen, Y.F. Lee, M.D. Remmenga, D.W. Smith.
Variance inflation factors in regression models with dummy
variables, Conference on Applied Statistics in Agriculture,
(2012) https://doi.org/10.4148/2475-7772.1034.
- W. Yoo, R. Mayberry, S. Bae, K. Singh, Q.P. He, Jr. J.W. Lillard, A
Study of effects of multicollinearity in the multivariable analysis,
Int. J. Appl. Sci. Technol., 4(5) (2014) 9–19.
- MAE and RMSE — Which Metric is Better? https://medium.com/human-in-a-machine-world/mae-and-rmse-which-metric-is-better-e60ac3bde13d (accessed 23.11.18).
- G. Hanrahan, K. Lu, Application of factorial and response surface
methodology in modern experimental design and optimization,
Crit. Rev. Anal. Chem., 36 (2006) 141–151.
- W.J. Gong, Y.P. Zhang, S.H. Choi, Y.J. Zhang, K. Lee, Application
of response surface methodologies in capillary electrophoresis,
Microchim. Acta, 156 (2007) 327–335.
- J. Zolgharneina, A. Shahmoradia, J.B. Ghasemi, Comparative
study of Box–Behnken, central composite, and Doehlert matrix
for multivariate optimization of Pb(II) adsorption onto Robinia
tree leaves, J. Chemom., 27 (2013) 12–20.
- M. Sedighi, K. Keyvanloo, J. Towfighi, Modeling of thermal
cracking of heavy liquid hydrocarbon: Application of kinetic
modeling, artificial neural network, and neuro-fuzzy models,
Ind. Eng. Chem. Res., 50 (2011) 1536–1547.
- S.S. Chong, A.R. Abdul Aziz, S.W. Harun, H. Arof, S. Shamshirband,
Application of multiple linear regression, central
composite design, and ANFIS models in dye concentration
measurement and prediction using plastic optical fiber sensor,
Measurement, 74 (2015) 78–86.
- T.M. Patel, N.M. Bhatt, RSM and MLR model for equivalent
stress prediction of Eicher 11.10 chassis frame: a comparative
study, Syst. Technol., 51 (2016) 387–395.