References

  1. C. Fritzmann, J. Lowenberg, T. Wintgens, T. Melin, State-of-the-art of reverse osmosis: desalination, Desalination, 216 (2007) 1–76.
  2. S. Postel and Last Oasis: Facing Water Scarcity, W.W. Norton & Company, New York, 1992.
  3. P. Simon, Tapped Out: The Coming World Crisis in Water and What We Can Do About It, Welcome Rain, New York, 1998.
  4. T.J. Welgemoed, C.F. Schutte, Capacitive deionization technology TM: an alternative desalination solution, Desalination, 183 (2005) 327–340.
  5. J.C. Farmer, T.D. Tran, J.H. Richardson, D.V. Fix, S.C. May, S.L. Thomson, The Application of Carbon Aerogel Electrodes to Desalination and Waste Treatment, Annual meeting of the American Institute of Chemical Engineers, Los Angeles, CA, 1997.
  6. Y. Oren, Capacitive deionization (CDI) for desalination and water treatment - past, present and future (a review), Desalination, 228 (2008) 10–29.
  7. L. Zou, H. Li, M. Mossad, Capacitive deionisation as a useful tool for inland brackish water desalination, World Congress/Perth Convention and Exhibition Centre (PCEC), Perth, Western Australia, 2011.
  8. L. Li, L. Zou, H. Song, G. Morris, Ordered mesoporous carbons synthesized by a modified sol-gel process for electrosorptive removal of sodium chloride, Carbon, 47 (2003) 775–781.
  9. A. Thamilselvan, A.S. Nesaraj, M. Noel, Review on carbon-based electrode materials for application in capacitive deionization process, Int. J. Environ. Sci. Technol., 13 (2016) 2961–2976.
  10. P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin?, Science, 343 (2014) 1210–1211.
  11. S. Zhang, N. Pan, Supercapacitors performance evaluation, Adv. Energy Mater., (2014) 1–19.
  12. Q. Zhou, M. Zhang, J. Chen, J.D Hong, G. Shi, Nitrogen-doped holey graphene film based ultrafast electrochemical capacitors, ACS Appl. Mater. Interfaces., 8 (2016) 20741–20747.
  13. H.C. Youn, S.M. Bak, M.S. Kim, C. Jaye, D.A. Fischer, C.W. Lee, X.Q. Yang, K.C. Roh, K.B. Kim, High-surface-area nitrogen-doped reduced graphene oxide for electric double-layer capacitors, Chem. Sus. Chem., 8 (2015) 1875–1884.
  14. J. Vatamanu, Z.D. Bedrov, C. Perez, Y. Gogotsi, Increasing energy storage in electrochemical capacitors with ionic liquid electrolytes and nanostructured carbon electrodes, J. Phys. Chem. Lett., 4 (2013) 2829–2837.
  15. H. Yang, J. Yang, Z. Bo, X. Chen, X. Shuai, J. Kong, J. Yan, K. Cen, A kinetic-dominated charging mechanism within representative aqueous electrolyte based electric double-layer capacitors, J. Phys. Chem. Lett., 8(15) (2017) 3703–3710.
  16. A. Banerjee, P. Suresh Kumar, A.K. Shukla, Influence of binder solvent on carbon-layer structure in electrical-double-layer capacitors, J. Chem. Sci., 125 (2013) 1177–1183.
  17. A.G. Pandolfo, G.J. Wilson, T.D. Huynh, A.F. Hollenkamp, The influence of conductive additives and inter-particle voids in carbon EDLC electrodes, Fuel Cell., 10 (2010) 856– 864.
  18. H. Li, L. Zou, L. Pan, Z. Sun, Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization, Separ. Purif. Technol., 75 (2010a) 8–14.
  19. D. Dursun, S. Ozkul, R. Yuksel, H.E. Unalan, Enhancing capacitive deionization technology as an effective method for water treatment using commercially available graphene, Water Sci. Technol., 75 (2017) 643–649.
  20. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, New York, 1999.
  21. B.H. Park, J.H. Choi, Improvement in the capacitance of a carbon electrode prepared using water soluble polymer binder for a capacitive deionization application, Electrochim. Acta., 55 (2010) 2888–2893.
  22. B.H. Park, Y.J. Kim, J.S. Park, J. Choi, Capacitive deionization using a carbon electrode prepared with water-soluble poly(vinyl alcohol) binder, J. Ind. Eng. Chem., 17 (2011) 717–722.
  23. Z. Zhu, S. Tang, J. Yuan, X. Qin, Y. Deng, R. Qu, G.M. Haarberg, Effects of various binders on supercapacitor performances, Int. J. Electrochem. Sci., 11 (2016) 8270–8279.
  24. Y. Zhang, J. Guo, T. Li, Research progress on binder of activated carbon electrode, Adv. Mater. Res., 549 (2012) 780–784.
  25. R. Pundir, G.H.V.C. Chary, M.G. Dastidar, Application of Taguchi method for optimizing the process parameters for the removal of copper and nickel by growing Aspergillus sp., Water Resour. Ind., 20 (2018) 83–92.
  26. P. Diaz, Z. Gonzalez, M. Grand, R. Menendez, R. Santamaria, C. Blanco, Evaluating capacitive deionization for water desalination by direct determination of chloride ions, Desalination, 344 (2014) 396–401.
  27. P.W. Sutter, J.I. Flege, E.A. Sutter, Epitaxial graphene on ruthenium, Nat. Mater., 7 (2008) 406–411.
  28. X. Liang, Z. Fu, S.Y. Chou, Graphene transistors fabricated via transfer-printing in device active-areas on large wafer, Nano Lett., 7 (2007) 3840–3844.
  29. C. Berger, Z. Song, X. Li, X. Wu, X.N. Brown, N.C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, Electronic confinement and coherence in patterned epitaxial graphene, Science, 312 (2006) 1191–1196.
  30. C.-Y. Su, A.-Y. Lu, Y. Xu, F.-R. Chen, A.N. Khlobystov, L.-J. Li, High-quality thin graphene films from fast electrochemical exfoliation, ACS Nano., 5 (2011) 2332–2339.
  31. H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors, ACS Nano., 2 (2008) 463–470.
  32. M. Selvam, K. Sakthipandi, R. Suriyaprabha, K. Saminathan, V. Rajendran, Synthesis and characterization of electrochemically-reduced graphene, Bull. Mater. Sci., 36 (2013) 1315–1321.
  33. B.M. Asquith, J. Meier-Haack, B.P. Ladewig, Poly(arylene ether sulfone) copolymers as binders for capacitive deionization activated carbon electrodes, Chem. Eng. Res. Design, 104 (2015) 81–89.
  34. A. Bowino, G. Capannelli, S. Munari, A. Turturro, Solubility parameters of polyvinylidene fluoride, J. Polym. Sci. Part B: Polym. Physics., 26 (1988) 785–794.
  35. K.-K. Park, J.-B. Lee, P.-Y. Park, S.-W. Yoon, J.-S. Moon, H.-M. Eum, C.-W. Lee, Development of a carbon sheet electrode for electrosorption desalination, Desalination, 206 (2007) 86–91.
  36. B. Xu, S. Hou, M. Chu, G. Cao, Y. Shan, An activation free method for preparing microporous carbon by the pyrolysis of poly(vinylidene fluoride), Carbon, 48 (2010) 2812–2814.
  37. C.H. Hou, C.Y. Huang, C.Y. Hu, Application of capacitive deionization technology to the removal of sodium chloride from aqueous solutions, Int. J. Environ. Sci. Technol., 10 (2013) 753–760.
  38. C.J. Gabelich, T.D. Tran, J.H. Suffer, Electrosorption of inorganic salts from aqueous solution using carbon aerogel, Environ Sci Tech., 36 (2002) 3010–3019.
  39. P. Xu, J.E. Drewes, D. Heil, G. Wang, Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology, Water Res., 42 (2008) 2605–2617.