References

  1. H.M. Gontijo, S.D.F. Rocha, E.M.A. Becheleni, Modelagem do cristalizador a vácuo para tratamento de efluentes líquidos de refinarias de petróleo, Engevista, 16 (2014) 19–27.
  2. L. Bandura, A. Woszuk , D. Kołodynska, W. Franus, Application of mineral sorbents for removal of petroleum substances: a review, Minerals, 7 (2017) 37.
  3. T. Paulauskiene, I. Jucike, N. Jušcenko, D. Baziuke, The use of natural sorbents for spilled crude oil and ˙diesel cleanup from the water surface, Water Air Soil Pollut., 225 (2014) 1959–1971.
  4. J. Zhang, S. Fan, J. Yang, X. Du, F. Li, H. Hou, Petroleum contamination of soil and water, and their effects on vegetables by statistically analyzing entire data set, Sci. Total Environ., 476–477 (2014) 258–265.
  5. A. Alva-Argáez, A.C. Kokossis, R. Smith, The design of water using systems in petroleum refining using a water-pinch decomposition, Chem. Eng. J., 128 (2007) 33–46.
  6. P.L. Mesquita, C.R. Souza, N.T.G. Santos, S.D.F. Rocha, Fixedbed study for bone char adsorptive removal of refractory organics from electrodialysis concentrate produced by petroleum refinery, Environ. Technol., (2017) 1–13.
  7. T.C.M. Nonato, A.A.A. Alves, M.L. Sens, R.L. Dalsasso, Produced water from oil - A review of the main treatment technologies, J. Environ. Chem. Toxicol., 2(1) (2018) 23–27.
  8. E.M.A. Becheleni, R.P. Borba, M.M. Seckler, S.D.F. Rocha, Water recovery from saline streams produced by electrodialysis, Environ. Technol., 36 (2015) 386–394.
  9. E. AitHsine, A. Benhammou, M.N. Pons, Water resource management in soft drink industry-water use and wastewater generation, Environ. Technol., 26 (2005) 1309–1316.
  10. M.N. Rashed, Adsorption technique for the removal of organic pollutants from water and wastewater. In: Rashed, M.N. (Ed.), Organic Pollutants – Monitoring, Risk and Treatment. InTech, Rijeka, Croatia, (2013) 167–194.
  11. O. Botalova, J. Schwarzbauer, T. Frauenrath, L. Dsikowitzky, Identification and chemical characterization of specific organic constituents of petrochemical effluents, Water Res., 43(15) (2009) 3797–3812.
  12. J. Saien, F. Shahrezaei, Organic pollutants removal from petroleum refinery wastewater with nanotitania photocatalyst and UV light emission, Int. J. Photoenergy, (2012) 1–5.
  13. Y.A. Mustafa, A.I. Alwared, M. Ebrahim, Removal of oil from wastewater by advanced oxidation process/homogeneous process, J. Eng., 19(6) (2013) 686–694.
  14. S.S. Silva, O. Chiavone-Filho, E.L. Barros-Neto, E.L. Foletto, Oil removal from produced water by conjugation of flotation and photo-Fenton processes, J. Environ. Manage., 147 (2015) 257–263.
  15. S. Masu, E. Grecu, Solutions in the coagulation of oil wastewater, Studia Ubbchemia, LXI, 4 (2016) 189–202.
  16. S. Kumar, B.K. Nandi, C. Guria, A. Mandal, Oil removal from produced water by ultrafiltration using polysulfone membrane, Braz. J. Chem. Eng., 34(2) (2017) 583–596.
  17. C.C. Almeida, P.R.F. Costa, M.J.M. Melo, E.V. Santos, C.A. Martínez-Huitle, Application of electrochemical technology for water treatment of Brazilian industry effluents, J. Mex. Chem. Soc., 58 (2014) 276–286.
  18. H. Paudyal, B. Pangeni, K. Inoue, K. Ohto, H. Kawakita, K.N. Ghimire, H. Harada, S. Alam, Adsorptive removal of strontium from water by using chemically modified orange juice residue, Separat. Sci. Technol., 49 (2014) 1244–1250.
  19. Z.V.P. Murthy, S. Parmar, Removal of Sr2þ by electrocoagulation using stainless steel and aluminium electrode, Desalination, 282 (2011) 63–67.
  20. S.G. Mashkani, P.T.M. Ghazvini, Biotechnological potential of Azollafiliculoides for biosorption of Csþ and Sr2þ: Application of micro-PIXE for measurement of biosorption, Biores. Technol., 100 (2009) 1915–1921.
  21. T.K. Rout, D.K. Sengupta, G. Kaur, S. Kumar, Enhanced removal of dissolved metal ions in radioactive effluents by flocculation, Int. J. Miner. Process., 80 (2006) 215–222.
  22. N. Rawat, P.K. Mohapatra, D.S. Lakshmi, A. Bhattacharyya, V.K. Manchanda, Evaluation of a supported liquid membrane containing a macrocyclic ionophore for selective removal of Sr2þ from nuclear waste solution, J. Membr. Sci., 275 (2006) 82–88.
  23. J. Cao, P. Gu, J. Zhao, D, Zhang, Y. Deng, Removal of strontium from an aqueous solution using co-precipitation followed by microfiltration (CPMF), J. Radioanal. Nucl. Ch., 28(5) (2010) 539–546.
  24. A. Hanafi, Adsorption of cesium, thallium, strontium and cobalt radionuclides using activated carbon, J. At. Mol. Sci., 1(4) (2010) 292–300.
  25. R.A. Shawabkeh, D.A. Rockstraw, R.K. Bhada, Cu2þ and Sr2þ adsorption by a novel material manufactured from pecan shells, Carbon, 40 (2002) 781–786.
  26. M. Turek, P. Dydo, R. Klimed, Salt production from coal-mine brine in ED-evaporation-crystallization system, Desalination, 184 (2005) 439–446.
  27. O. Lefebvre, R. Moletta, Treatment of organic pollution in industrial saline wastewater: a literature review, Water Res., 40 (2006) 3671–3682.
  28. I. Smiciklas, S. Dimovic, M. Sljivic, I. Plecas, B. Loncar, M. Mitric, Resource recovery of animal bones: Study on sorptive properties and mechanism for Sr2+ ions, J. Nucl. Mater., 400 (2010) 15–24.
  29. A. Bigi, E. Boanini, C. Capuccini, M. Gazzano, Strontium-substituted hydroxyapatite nanocrystals, Inorg. Chim. Acta., 360(3) (2007) 1009–1016.
  30. M.D. O’Donnell, Y. Fredholm, A.D. Rouffignac, R.G. Hill, Structural analysis of a series of strontium-substituted apatites, Acta Biomater., 4 (2008) 1455–1464.
  31. H. Zhu, H. Wang, G. Wang, K. Zhang, Removal of Fluorine from Water by the Aluminum-Modified Bone Char. In: IPCBEE (Hrsg.), International Conference on Biology, Environment and Chemistry. IACSIT Press, Singapore, 1 (2010) 455–457.
  32. E.M. Nigri, M.A.P. Cechinel, D.A. Mayer, L.P. Mazur, J.M. Loureiro, S.D.F. Rocha, V.J.P. Vilar, Cow bones char as a green sorbent for fluorides removal from aqueous solutions: batch and fixed-bed studies, Environ. Sci. Pollut. Res., 24 (2017) 2364–2380.
  33. L.R. Brunson, D.A. Sabatini, An evaluation of fish bone char as an appropriate arsenic and fluoride removal technology for emerging regions, Environ. Eng. Sci., 26 (2009) 1777–1784.
  34. I. Smiciklas, S. Dimovic, M. Sljivic, I. Plecas, The batch study of Sr2+ sorption by bone char, J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 43(2) (2008) 210–217.
  35. S. Dimović, I. Smiciklas, I. Plećas, D. Antonović, Kinetic study of Sr2+ sorption by bone char, Sep. Sci. Technol., 44(3) (2009) 645–667.
  36. E.M. Nigri, A. Bhatnagar, S.D.F. Rocha, Thermal regeneration process of bone char used in the fluoride removal from aqueous solution, J. Clean. Prod., 142 (2017) 3558–3570.
  37. T. Nur, P. Loganathan, T.C. Nguyen, S. Vigneswaran, G. Singh, J. Kandasamy, Batch and column adsorption and desorption of fluoride using hydrous ferric oxide: Solution chemistry and modelling, Chem. Eng. J., 247 (2014) 93–102.
  38. N. Chen, Z. Zhang, C. Feng, M. Li, R. Chen, N. Sugiura, Investigations on the batch and fixed-bed column performance of fluoride adsorption by Kanuma mud, Desalination, 268 (2011) 76–82.
  39. A. Bhatnagar, E. Kumara, M. Sillanpaa, Fluoride removal from water by adsorption - A review, Chem. Eng. J., 171 (2011) 811–840.
  40. S.S. Tripathy, J.L. Bersillon, K. Gopal, Removal of fluoride from drinking water by adsorption onto alum-impregnated activated alumina, Sep. Purif. Technol., 50 (2006) 310–317.
  41. A. Rezaee, H. Rangkooy, A.Jonidi-Jafari, A. Khavanin, Surface modification of bone char for removal of formaldehyde from air, Appl. Surf. Sci., 286 (2013) 235–239.
  42. S.M. Wabaidur, M.A. Khan, M.R. Siddiqui, Z.A. Alothman, M.S. Al-Ghamdi, I.H. Al-Sohami, Dodecyl sulfate chain anchored bio-char to sequester triaryl methane dyes: Equilibrium, kinetics, and adsorption mechanism, Desal. Water Treat., 67 (2017) 357–370.
  43. C.K. Rojas-Mayorga, A. Bonilla-Petriciolet, J. Silvestre-Albero, I.A. Aguayo-Villarreal, D.I. Mendoza-Castillo, Physico-chemical characterization of metal-doped bone chars and their adsorption behavior for water defluoridation, Appl. Surf. Sci., 355 (2015) 748–760.
  44. J.P. Chen, S. Wu, K.H. Chong, Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption, Carbon, 41(10) (2003) 1979–1986.
  45. G.B. Cardoso, D. Maniglio, F.Z. Volpato, A. Tondon, C. Migliaresi, R.R. Kaunas, C.A.C. Zavaglia, Oleic acid surfactant in polycaprolactone/hydroxyapatite-composites for bone tissue engineering, J. Biomed. Mater. Res. B. Appl. Biomater., 104(6) (2015) 1076–1082.
  46. Y. Luo, Y. Ling, W. Guo, J. Pang, W. Liu, Y. Fang, X. Wen, K. Wei, X. Gao, Docetaxel loaded oleic acid-coated hydroxyapatite nanoparticles enhance the docetaxel induced apoptosis through activation of caspase-2 in androgen independent prostate cancer cells, J. Control. Release, 147 (2010) 278–288.
  47. M.A. Trofimovich, A.A. Galiguzov, D.I. Kalugin, A.P. Malakho, A.D. Rogozin, coal tar pitch modification methods: effect of surfactant substances and carbon additives on binder properties, Refract. Ind. Ceram., 56 (2016) 664–669.
  48. M. Khalil, J. Yu, N. Liu, R.L. Lee, Non-aqueous modification of synthesized hematite nanoparticles with oleic acid, Colloid Surface A: Physicochem. Eng. Asp., 453 (2014) 7–12.
  49. Z. Li, Y. Zhu, Surface-modification of SiO2 nanoparticles with oleic acid, Appl. Surf. Sci., 211(4) (2003) 315–320.
  50. A.H. Mahvi, M. Vosoughi, M.J. Mohammadi, A. Asadi, B. Hashemzadeh, A. Zahedi, S. Pourfadakar, Sodium dodecyl sulfate modified-zeolite as a promising adsorbent for the removal of natural organic matter from aqueous environments, Health Scope, 5(1) (2016) 1–8.
  51. X.l. Song, M.W. Zhang, Y. Zhang, S.T. Huang, B.Y. Geng, R.B. Meng, Y.Z. Yang, Y.S. Zhong, H.Y. Liu, Surface modification of coconut-based activated carbon by SDS and its effects on Pb2+ adsorption, J. Cent. South Univ., 20 (2013) 1156–1160.
  52. U.E. Chaudhari, A.K. Wanjari, Sodium dodecyl sulfate impregnated granulated activated charcoal for the scavenging of Cr (VI) metal ions from aqueous solution, Int. J. Chem. Phys. Sci., 4 (2015) 261–266.
  53. P. Pourrezaei, P. Drzewicz, Y. Wang, E.M. Gamal, L.A. Perez-Estrada, J.W. Martin, J. Anderson, S. Wiseman, K. Liber, J.P. Giesy, The impact of metallic coagulants on the removal of organic compounds from oil sands process-affected water, Environ. Sci. Technol., 45(19) (2011) 8452–8459.
  54. S.M. Anisuzzaman, C.G. Joseph, Y.H. Taufiq-Yap, D. Krishnaiah, V.V. Tay, Modification of commercial activated carbon for the removal of 2, 4-dichlorophenol from simulated wastewater, J. King Saud Univ. Sci., 27(4) (2015) 318–330.
  55. L.L.S. Borba, M.F.D. Oliveira, M.A.F. Melo, D.M.A. Melo, S.B.C. Pergher, Preparação de adsorventes à base de materiais naturais hidrofobizados com cera de carnaúba, Perspectiva, Erechim., 37(139) (2013) 37–46.
  56. A.S.C. Lopes, S.M.L. Carvalho, D.S.B. Brasil, R.A. Mendes, M.O. Lima, Surface modification of commercial activated carbon (CAG) for the adsorption of benzene and toluene, Am. J. Anal. Chem., (2015) 528–538.
  57. A.A. El-Hendawy, Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon, Carbon, 41 (2003) 713–722.
  58. F.T. Ademiluyi, S.A. Amadi, N.J. Amakama, Adsorption and treatment of organic contaminants using activated carbon from waste nigerian bamboo, J. Appl. Sci. Environ. Manage., 13(3) (2009) 39–47.
  59. A. Amalraj, A. Pius, Removal of fluoride from drinking water using aluminum hydroxide coated activated carbon prepared from bark of Morindatinctoria, Appl. Water Sci., 7(6) (2017) 2653–2665.
  60. L. Li, S. Liu, J. Liu, Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal, J. Hazard. Mater., 192 (2011) 683–690.
  61. APHA - American Public Health Association. Standard methods for the examination of water and wastewater. 22nd ed. Washington, 2012.
  62. P.L. Mesquita, M.A.P. Cruz, C.R. Souza, N.T.G. Santos, E.R. Nucci, S.D.R. Rocha, Removal of refractory organics from saline concentrate produced by electrodialysis in petroleum industry using bone char, Adsorption, 23 (2017) 983–997.
  63. S. Lagergren, K. Svenska, About the theory of so-called adsorption of soluble substances, K. Sven. Vetenskapsakad. Handl., 24 (1898) 1–39.
  64. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  65. Y.S. Ho, Review of second-order models for adsorption systems, J. Hazard. Mater., 36 (2006) 681–689.
  66. W. Nigussie, F. Zewgeb, B.S. Chandravanshi, Removal of excess fluoride from water using waste residue from alum manufacturing process, J. Hazard. Mater., 147 (2007) 954–963.
  67. S.K. Swain, S. Mishra, T. Patnaik, R.K. Pateld, U. Jhaa, R.K. Deye, Fluoride removal performance of a new hybrid sorbent of Zr(IV)-ethylenediamine, Chem. Eng. J., 184 (2012) 72–81.
  68. E. Tchomgui-Kamga, A. Veronique, C.P. Nanseu-Njiki, A. Nathalie, N. Emmanuel, A. Darchen, Preparation and characterization of charcoals that contain dispersed aluminum oxide as adsorbents for removal of fluoride from drinking water, Carbon, 48 (2010) 333–343.
  69. V.J. Inglezakiz, G.S. Poulopoulos, Adsorption, Ion Exchange and catalysis; Design of operations and Environmental applications. Elsevier, Netherlands, 2006.
  70. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 385–471.
  71. I. Langmuir, The constitution and fundamental properties of solids and liquids, J. Am. Chem. Soc., 38(11) (1916) 2221–2295.
  72. O. Redlich, D.L. Peterson, A useful adsorption isotherm, J. Phys. Chem., 63 (1959) 1024–1026.
  73. R. Sips, On the structure of a catalyst surface, J. Chem. Phys., 16 (1948) 490–495.
  74. M.I. Tempkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalyst, Acta Phys. Chim. USSR, 12 (1940) 327–356.
  75. K.H. Hor, J.M.C. Chee, M.N. Chong, B. Jin, C. Saint, P.E. Poh, R. Aryal, Evaluation of physicochemical methods in enhancing the adsorption performance of natural zeolite as low cost adsorbent of methylene blue dye from wastewater, J. Clean. Prod., 118 (2016) 197–209.
  76. R. Huang, B. Yang, Q. Liu, K. Ding, Removal of fluoride ions from aqueous solutions using protonated cross-linked chitosan particles, J. Fluorine Chem., 141 (2012) 29–34.
  77. A. Ausavasukhi, C. Kampoosaen, O. Kengnok, Adsorption characteristics of Congo red on carbonized leonardite, J. Clean. Prod., 134 (2015) 506–514.
  78. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156(1) (2010) 2–10.
  79. S.J. Allen, G. Mckay, J.F. Porter, Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems, J. Colloid. Interf. Sci., 280(2) (2004) 322–333.
  80. P. Atkins, J. Paula, Atkins’ Physical Chemistry. 9th ed., Oxford University Press, 2010.
  81. N.A. Medellin-Castillo, R. Leyva-Ramos, E. Padilla-Ortega, R.O. Perez, J.V. Flores-Cano, M.S. Berber-Mendoza, Adsorption capacity of bone char for removing fluoride from water solution. Role of hydroxyapatite content, adsorption mechanism and competing anions, J. Ind. Eng. Chem., 20 (2014) 4014–4021.
  82. S. Patel, S. Wei, J. Han, W. Gao, Transmission electron microscopy analysis of hydroxyapatite nanocrystals from cattle bones, Mater. Charact., 109 (2015) 73–78.
  83. T.J. Thompson, M. Gauthier, M. Islam, The application of a new method of Fourier transform infrared spectroscopy to the analysis of burned bone, J. Archaeol. Sci., 36 (2009) 910–914.
  84. M. Tianyuan, X. Zhiguo, L. Libing, Effect of reaction systems and surfactant additives on the morphology evolution of hydroxyapatite nanorods obtained via a hydrothermal route, Appl. Surf. Sci., 257 (2001) 4384–4388.
  85. S. Dimović, I. Smiciklas, I. Plećas, D. Antonović, M. Mitrić, Comparative study of differently treated animal bones for Co2+ removal, J. Hazard. Mater., 164 (2015) 279–287.
  86. S.V. Oliveira, S.N. Cavalcanti, G.P. Rabello, E.M. Araújo, M.V.L. Fook, Análise no infravermelho da hidroxiapatita. In: VI National Congress of Mechanical Engineering, Paraíba, Brazil. 2010.
  87. J.F. Boily, P.L. Gassman, T. Peretyazhko, J. Szanyi, J.M. Zachara, FTIR Spectral Components of Schwertmannite, Environ. Sci. Technol., 44 (2010) 1185–1190.