References

  1. N. Kuyucak, A. Akcil, Cyanide and removal options from effluents in gold mining and metallurgical processes, Miner. Eng., 50 (2013) 13–29.
  2. J. Ingles, J.S. Scott, State of the process for the treatment of gold effluents. Mining, Miner. Metall. Process Div, Intern. report, Ontario, Canada. (1993).
  3. M.A. Acheampong, R.J.W. Meulepas, P.N.L. Lens, Removal of heavy metals and cyanide from gold mine wastewater, J. Chem. Technol. Biotechnol., 85 (2010) 590–613.
  4. K. Osathaphan, K. Ruengruehan, R.A. Yngard, V.K. Sharma, Photocatalytic degradation of Ni (II)-cyano and Co (III)-cyano complexes, Water Air Soil Pollut., 224 (2013) 1647.
  5. R. Kumar, S. Saha, S. Dhaka, M.B. Kurade, C.U. Kang, S.H. Baek, B.-H. Jeon, Remediation of cyanide-contaminated environments through microbes and plants: a review of current knowledge and future perspectives, Geosystem Eng., 20 (2017) 28–40.
  6. J.R. Parga, S.S. Shukla, F.R. Carrillo-Pedroza, Destruction of cyanide waste solutions using chlorine dioxide, ozone and titania sol, Waste Manag., 23 (2003) 183–191.
  7. L.A.C. Teixeira, M.T.C. Arellano, C.M. Sarmiento, L. Yokoyama, F.V. da Fonseca Araujo, Oxidation of cyanide in water by singlet oxygen generated by the reaction between hydrogen peroxide and hypochlorite, Miner. Eng., 50 (2013) 57–63.
  8. A. Khodadadi, P. Teimoury, M. Abdolahi, A. Samiee, Detoxification of cyanide in a gold processing plant tailings water using calcium and sodium hypochlorite, Mine Water Environ., 27 (2008) 52–55.
  9. H. Shi, J. Li, D. Shi, H. Shi, B. Feng, W. Li, Y. Bai, J. Zhao, A. He, Combined reduction/precipitation, chemical oxidation, and biological aerated filter processes for treatment of electroplating wastewater, Sep. Sci. Technol., 50 (2015) 2303–2310.
  10. Y. Zheng, Z. Li, X. Wang, X. Gao, C. Gao, The treatment of cyanide from gold mine effluent by a novel five-compartment electrodialysis, Electrochim. Acta, 169 (2015) 150–158.
  11. C.E. Halim, S.A. Short, J.A. Scott, R. Amal, G. Low, Modelling the leaching of Pb, Cd, As, and Cr from cementitious waste using PHREEQC, J. Hazard. Mater., 125 (2005) 45–61.
  12. S.S. Kim, M.H. Baik, K.C. Kang, S.H. Kwon, J.W. Choi, Solubilities of actinides in a domestic groundwater and a bentonite porewater calculated by using PHREEQC, J. Ind. Eng. Chem., 14 (2008) 739–746.
  13. A. Motalebi Damuchali, G. Asadollahfardi, A. Khodadadi, Effective parameter predictions in metals transport from the Zanjan zinc mine tailings using PHREEQC, Mine Water Environ., 31 (2012) 339–343.
  14. C.A. Cravotta, K.B.C. Brady, Priority pollutants and associated constituents in untreated and treated discharges from coal mining or processing facilities in Pennsylvania, USA, Appl. Geochemistry, 62 (2015) 108–130.
  15. M. Wålinder, Modeling of perfluoroalkyl substance adsorption to an ion exchanger using PHREEQC, Sveriges lantbruksuniversitet, 2016.
  16. S. Bisone, V. Chatain, D. Blanc, M. Gautier, R. Bayard, F. Sanchez, R. Gourdon, Geochemical characterization and modeling of arsenic behavior in a highly contaminated mining soil, Environ. Earth Sci., 75 (2016) 306.
  17. E. Bakhtavar, K. Shahriar, O. Morteza, Old tailings rehabilitation with regard to environmental impacts at the Mooteh Gold Mine; Iran: VIth Int. Sci. Conf. Mod. Manag. Mine Prod. Geol. Environ., Sofia, Bulgaria, 2006.
  18. D.L. Parkhurst, C.A.J. Appelo, User’s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, (1999).
  19. P. Aagaard, H.C. Helgeson, Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions; I, Theoretical considerations, Am. J. Sci., 282 (1982) 237–285.
  20. J.M. Delany, I. Puigdomenech, T.J. Wolery, Precipitation kinetics option for the EQ6 geochemical reaction path code, Lawrence Livermore National Lab., CA (United States), 1986.
  21. P. Van Cappellen, Y. Wang, Cycling of iron and manganese in surface sediments; a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese, Am. J. Sci., 296 (1996) 197–243.
  22. P. Krause, D.P. Boyle, F. Bäse, Comparison of different efficiency criteria for hydrological model assessment, Adv. Geosci., 5 (2005) 89–97.
  23. C.J. Willmott, S.M. Robeson, K. Matsuura, A refined index of model performance, Int. J. Climatol., 32 (2012) 2088–2094.
  24. C.M. Gerritsen, D.W. Margerum, Non-metal redox kinetics: hypochlorite and hypochlorous acid reactions with cyanide, Inorg. Chem., 29 (1990) 2757–2762.
  25. S.R. Wild, T. Rudd, A. Neller, Fate and effects of cyanide during wastewater treatment processes, Sci. Total Environ., 156 (1994) 93–107.
  26. R.M. Felix-Navarro, S. Wai Lin, V. Violante-Delgadillo, A. Zizumbo-Lopez, S. Perez-Sicairos, Cyanide degradation by direct and indirect electrochemical oxidation in electro-active support electrolyte aqueous solutions, J. Mex. Chem. Soc., 55 (2011) 51–56.
  27. Federation American Public Health Association American Water Works Association Water Pollution Control Federation Water Environment, Standard methods for the examination of water and wastewater, Washington, DC., 2005.