References
- N. Kuyucak, A. Akcil, Cyanide and removal options from
effluents in gold mining and metallurgical processes, Miner.
Eng., 50 (2013) 13–29.
- J. Ingles, J.S. Scott, State of the process for the treatment of gold
effluents. Mining, Miner. Metall. Process Div, Intern. report,
Ontario, Canada. (1993).
- M.A. Acheampong, R.J.W. Meulepas, P.N.L. Lens, Removal
of heavy metals and cyanide from gold mine wastewater, J.
Chem. Technol. Biotechnol., 85 (2010) 590–613.
- K. Osathaphan, K. Ruengruehan, R.A. Yngard, V.K. Sharma,
Photocatalytic degradation of Ni (II)-cyano and Co (III)-cyano
complexes, Water Air Soil Pollut., 224 (2013) 1647.
- R. Kumar, S. Saha, S. Dhaka, M.B. Kurade, C.U. Kang, S.H.
Baek, B.-H. Jeon, Remediation of cyanide-contaminated environments
through microbes and plants: a review of current
knowledge and future perspectives, Geosystem Eng., 20 (2017)
28–40.
- J.R. Parga, S.S. Shukla, F.R. Carrillo-Pedroza, Destruction of
cyanide waste solutions using chlorine dioxide, ozone and
titania sol, Waste Manag., 23 (2003) 183–191.
- L.A.C. Teixeira, M.T.C. Arellano, C.M. Sarmiento, L.
Yokoyama, F.V. da Fonseca Araujo, Oxidation of cyanide in
water by singlet oxygen generated by the reaction between
hydrogen peroxide and hypochlorite, Miner. Eng., 50 (2013)
57–63.
- A. Khodadadi, P. Teimoury, M. Abdolahi, A. Samiee, Detoxification
of cyanide in a gold processing plant tailings water
using calcium and sodium hypochlorite, Mine Water Environ.,
27 (2008) 52–55.
- H. Shi, J. Li, D. Shi, H. Shi, B. Feng, W. Li, Y. Bai, J. Zhao, A. He,
Combined reduction/precipitation, chemical oxidation, and
biological aerated filter processes for treatment of electroplating
wastewater, Sep. Sci. Technol., 50 (2015) 2303–2310.
- Y. Zheng, Z. Li, X. Wang, X. Gao, C. Gao, The treatment of
cyanide from gold mine effluent by a novel five-compartment
electrodialysis, Electrochim. Acta, 169 (2015) 150–158.
- C.E. Halim, S.A. Short, J.A. Scott, R. Amal, G. Low, Modelling
the leaching of Pb, Cd, As, and Cr from cementitious waste
using PHREEQC, J. Hazard. Mater., 125 (2005) 45–61.
- S.S. Kim, M.H. Baik, K.C. Kang, S.H. Kwon, J.W. Choi, Solubilities
of actinides in a domestic groundwater and a bentonite
porewater calculated by using PHREEQC, J. Ind. Eng. Chem.,
14 (2008) 739–746.
- A. Motalebi Damuchali, G. Asadollahfardi, A. Khodadadi,
Effective parameter predictions in metals transport from the
Zanjan zinc mine tailings using PHREEQC, Mine Water Environ.,
31 (2012) 339–343.
- C.A. Cravotta, K.B.C. Brady, Priority pollutants and associated
constituents in untreated and treated discharges from coal
mining or processing facilities in Pennsylvania, USA, Appl.
Geochemistry, 62 (2015) 108–130.
- M. Wålinder, Modeling of perfluoroalkyl substance adsorption
to an ion exchanger using PHREEQC, Sveriges lantbruksuniversitet,
2016.
- S. Bisone, V. Chatain, D. Blanc, M. Gautier, R. Bayard, F. Sanchez,
R. Gourdon, Geochemical characterization and modeling
of arsenic behavior in a highly contaminated mining soil,
Environ. Earth Sci., 75 (2016) 306.
- E. Bakhtavar, K. Shahriar, O. Morteza, Old tailings rehabilitation
with regard to environmental impacts at the Mooteh Gold
Mine; Iran: VIth Int. Sci. Conf. Mod. Manag. Mine Prod.
Geol. Environ., Sofia, Bulgaria, 2006.
- D.L. Parkhurst, C.A.J. Appelo, User’s guide to PHREEQC (Version
2): A computer program for speciation, batch-reaction,
one-dimensional transport, and inverse geochemical calculations,
(1999).
- P. Aagaard, H.C. Helgeson, Thermodynamic and kinetic
constraints on reaction rates among minerals and aqueous
solutions; I, Theoretical considerations, Am. J. Sci., 282 (1982)
237–285.
- J.M. Delany, I. Puigdomenech, T.J. Wolery, Precipitation kinetics
option for the EQ6 geochemical reaction path code, Lawrence
Livermore National Lab., CA (United States), 1986.
- P. Van Cappellen, Y. Wang, Cycling of iron and manganese in
surface sediments; a general theory for the coupled transport
and reaction of carbon, oxygen, nitrogen, sulfur, iron, and
manganese, Am. J. Sci., 296 (1996) 197–243.
- P. Krause, D.P. Boyle, F. Bäse, Comparison of different efficiency
criteria for hydrological model assessment, Adv. Geosci.,
5 (2005) 89–97.
- C.J. Willmott, S.M. Robeson, K. Matsuura, A refined index of
model performance, Int. J. Climatol., 32 (2012) 2088–2094.
- C.M. Gerritsen, D.W. Margerum, Non-metal redox kinetics:
hypochlorite and hypochlorous acid reactions with cyanide,
Inorg. Chem., 29 (1990) 2757–2762.
- S.R. Wild, T. Rudd, A. Neller, Fate and effects of cyanide during
wastewater treatment processes, Sci. Total Environ., 156 (1994)
93–107.
- R.M. Felix-Navarro, S. Wai Lin, V. Violante-Delgadillo, A.
Zizumbo-Lopez, S. Perez-Sicairos, Cyanide degradation by
direct and indirect electrochemical oxidation in electro-active
support electrolyte aqueous solutions, J. Mex. Chem. Soc., 55
(2011) 51–56.
- Federation American Public Health Association American
Water Works Association Water Pollution Control Federation
Water Environment, Standard methods for the examination of
water and wastewater, Washington, DC., 2005.