References

  1. D.L. Becker, S.C. Wilson, Carbon adsorption Handbook In: Chereminisoff, P. N., Ellebush, F. Ann Harbor Science Publishers, Michigan. The use of activated carbon for the treatment of pesticides and pesticidal wastes. Ann Harbor Science Publishers, Michigan, 1980, pp. 167–212.
  2. A. Kouras, A. Zouboulis, C. Samara, T. Kouimtzis, Removal of pesticides from aqueous solution by combined physico chemical process-the behavior of lindane, Environ. Pollut., 103 (1998) 193–202.
  3. E. Ayrancı, N. Hoda, Adsorption kinetics and isotherms of pesticides onto activated carbon cloth, Chemosphere, 60 (2005) 1600–1607.
  4. H. Shi, G. Zhao, M. Liu, T.C. Cao, Aptamer-based colorimetric sensing of acetamiprid in soil samples: sensitivity, selectivity and mechanism, J. Hazard. Mater., 260 (2013) 754–761.
  5. L. Li, X. Chen, D.Y. Zhang, Effects of insecticide acetamiprid on photosystem II (PSII) activity of Synechocystissp (FACHB-898), J. Pesticide Biochem. Physiol., 98(2) (2010) 300–304.
  6. H.X. Yang, X. Wang, J. Zheng, G.L. Wang, Biodegradation of acetamiprid by Pigmentiphaga sp.D-2 and the degradation pathway, Inter. Biodet. Biodeg. J., 85 (2013) 95–102.
  7. M. Uğurlu, M.H. Karaoğlu, TiO2 supported on sepiolite: preparation, structural and thermal characterization and catalytic behaviour in photocatalytic treatment of phenol and lignin from olive mill wastewater, Chem. Eng. J., 166 (2011) 859–867.
  8. J. Gong, C. Yang, W. Zhang, Liquid phase deposition of tungsten doped TiO2 films for visible light photoelectrocatalytic degradation of dodecyl benzenesulfonate, Chem. Eng. J., 167 (2011) 190–197.
  9. H. Katsumata, T. Kobayashi, S. Kaneco, T. Suzuki, K. Ohta., Degradation of linuron by ultrasound combined with photo-Fenton treatment, Chem. Eng. J., 166 (2011) 468–473.
  10. T. Zhou, T.T. Lim, S.S. Chin, A.G. Fane, Treatment of organics in reverse osmosis concentrate from a municipal wastewater reclamation plant: feasibility test of advanced oxidation processes with/without pretreatment, Chem. Eng. J., 166 (2011) 932–939.
  11. M.I. Maldonado, S. Malato, L.A. Perez-Estrada, W. Gernjak, I. Oller, X. Domenech, Partial degradation of five pesticides and an industrial pollutant by ozonation in a pilot-plant scale reactor, J. Hazard. Mater., 38 (2006) 363–369.
  12. S.E. Gamal, I.N. Nasr, S.M. Ayman, S.G.M. Mohammad, Kinetics and thermodynamics of adsorption of cadusafos on soils, J. Hazard. Mater., 172 (2009) 1608–1616.
  13. G.M. Somaia, Biosorption of pesticide onto a low cost carbon produced from apricot stone (Prunus armeniaca).: Equilibrium, kinetic and thermodynamic studies, J. App. Sci. Res., 9(10) (2013) 6459–6469.
  14. M.K. Rai, B.S. Giri, Y. Nath, H. Bajaj, S. Soni, R.P. Singh, R.S. Singh, B.N. Rai, Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from almond shell: kinetics, equilibrium and thermodynamics study, J. Water Supply: Res. Technol., (2018).
  15. B. Munmun, K.B. Ranjan, K.D. Sudip, Cr(VI) adsorption by a green adsorbent walnut shell:adsorption studies, regeneration studies, scale-up design and economic feasibility, Process Safety Environ. Protect., (2018).
  16. N.J. Suyog, R.G. Parag, Efficient removal of Acid Green 25 dye from wastewater using activated Prunus dulcis as biosorbent: Batch and column studies, J. Env. Manage., 210 (2018) 226–238.
  17. L. Hamza, K. Aissa, B. Badreddine, T. Mohamed, The use of prepared activated carbon as adsorbent for the removal of orange G from aqueous solution, Microchem. J., (2018) In press, accepted manuscript.
  18. A. Mittal, J. Mittal, A. Malviya, V.K. Gupta, Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials, J. Colloid Interface Sci., 344 (2010) 497–507.
  19. A. Mittal, J. Mittal, A. Malviya, D. Kaur, V.K. Gupta, Decoloration treatment of a hazardous triarylmethane dye, Light Green SF (Yellowish) by waste material adsorbents, J. Colloid Interface Sci., 342 (2010) 518–527.
  20. I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies, Desalination, 225 (2008) 13–28.
  21. C. Michailof, G.G. Stavropoulos, C. Panayiotou, Enhanced adsorption of phenolic compounds, commonly encountered in olive mill wastewaters, on olive husk derived activated carbons, Bioresour. Technol., 99 (2008) 6400–6408.
  22. A.A. El-Hendawy, A.J. Alexander, R.J. Andrews, G. Forrest, Effects of activation schemes on porous, surface and thermal properties of activated carbons prepared from cotton stalks, J. Anal. Appl. Pyro., 82 (2008) 272–278.
  23. J.T. Matheickal, Q. Yu, G.M. Woodburn, Biosorption of cadmium (II) from aqueous solutions by pre-treated biomass of marine alga DurvillAea potatorum, J. Water Res., 33 (1999) 335–342.
  24. Y.P. Ting, I.G. Prince, F. Lawson, Uptake of cadmium and zinc by the alga Chlorella vulgaris (II): Multi-ion situation, J. Biodet. Biodeg., 37 (1991) 445–455.
  25. S. Liang, X. Guo, N. Feng, Q. Tian, Adsorption of Cu2+ and Cd2+ from aqueous solution by mercapto-acetic acid modified orange peel, Colloids Surfaces. B: Biointerfaces, 73 (2009) 10–14.
  26. S. Liang, X. Guo, N. Feng, Q. Tian, Application of orange peel xanthate for the adsorption of Pb2+ from aqueous solutions, J. Hazard. Mater., 170 (2009) 425–429.
  27. M.R. Mehrasbi, Z. Farahmandkia, B. Taghibeigloo, A. Taromi, Adsorption of lead and cadmium from aquous solution by using almond shell, Water Air Soil Pollution, 199 (2009) 343–351.
  28. D. Ozdes, A. Gundogdu, C. Duran, H.B. Senturk, Evaluation of adsorption characteristics of malachite green onto almond shell (Prunus dulcis), Sep. Sci. Tech., 45 (2010) 2076–2085.
  29. M. Sahranavard, A. Ahmadpour, M.R. Doosti, Biosorption of hexavalent chromium ions from aqueous solutions using almond green hull as a low cost biosorbent, Eur. J. Sci. Res., 58(3) (2011) 392–400.
  30. A.J. Esfahlan, R. Jamei, R.J. Esfahlan, Food Chemistry, 120 (2010) 349–360.
  31. Z. Ch Fatima, B. Belkacem, Removal of acetamiprid from aqueous solutions with low-cost sorbents, Desal. Water Treat., 58 (2016) 419–430.
  32. V.O. Njoku, B.H. Hameed, Preparation and characterization of activated carbon from corncob by chemical activation with H3PO4 for 2,4-dichlorophenoxyacetic acid adsorption, Chem. Eng. J., 173 (2011) 391–399.
  33. F.N. Arslanoglu, F. Kar, N. Arslan, Adsorption of dark coloured compounds from peach pulp by using powdered activated carbon, J. Food Eng., 71 (2005) 156–163.
  34. H. Saeedeh, S. Khatereh, A.Y. Zahra, Preparation of activated carbon from agricultural wastes (almond shell and orange peel) for adsorption of 2-pic from aqueous solution, J. Ind. Eng. Chem., 20 (2014) 1892–1900.
  35. P.K. Chayande, S. P. Singh, M.K.N. Yenkie, Characterization of activated carbon prepared from almond shells for scavenging phenolic pollutants, Chem. Sci. Trans., 2(3) (2013) 835–840.
  36. Y.S. Ho, G. McKay, D.A.J. Wase, C.F. Foster, Study of the sorption of divalent metal ions on to Peat, Ads. Sci. Tech., 18 (2000) 639–650.
  37. M.S. Mahmoud, M.A. Sahar, G.M. Somaia, M.A. Ahmed, Evaluation of Egyptian banana peel (Musa sp.) as a green sorbent for groundwater treatment, Int. J. Eng. Tech., 4(11) (2014).
  38. Z. Chen, F. Shan, L. Cao, G. Fang, Synthesis and thermal properties of shape-stabilized lauric acid/activated carbon composites as phase change materials for thermal energy storage, Solar Energy Mater, Solar Cells, 102 (2012) 131–136.
  39. K. Kumar, R.K. Saxena, R.D. Kothari, K. Suri, N.K. Kaushik, J.N. Bohra, Correlation between adsorption and x-ray diffraction studies on viscose rayon based activated carbon cloth, Carbon, 35(12) (1997) 1842–1844.
  40. H. Xiuli, J. Haixia, Z. Yong, H. Weifeng, Z. Yangfan, G. Ping, D. Rui, L. Enhui, A high performance nitrogen-doped porous activated carbon for supercapacitor derived from pueraria, J. Alloys Comp., 744 (2018) 544–551.
  41. S.H. Chen, J. Zhang, C.L. Zhang, Q.Y. Yue, Y. Li, C. Li, Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis, Desalination, 252 (2010) 149–156.
  42. Y.S. Ho, G. McKay, D.A.J. Wase, C.F. Foster, Study of the sorption of divalent metal ions on peat, Ads. Sci. Tech., 18 (2000) 639–650.
  43. S.G. Mohammad, S.M. Ahmed, A.M. Badawi, A comparative adsorption study with different agricultural waste adsorbents for removal of oxamyl pesticide, Desal. Water Treat., 55 (2015) 2109–2120.
  44. A. Altinisik, E. Gur, Y. Seki, A natural sorbent, Luffa cylindrical for the removal of a model basic dye, J. Hazard. Mater., 179(1–3) (2010) 658–664.
  45. V.J.P. Poots, G. McKay, Removal of basic dye from effluent using wood as an adsorbent, J. Water Pollut. Control Fed., 50 (1978) 926–935.
  46. S. Benyoucef, M. Amrani, Adsorption of phosphate ions onto low cost Aleppo pine adsorbent, Desalination, 275 (2011) 231–236.
  47. M.M. Dubinin, Zh. Fiz. Khim, Modern state of the theory of volume filling of micropore adsorbents during adsorption of gases and steams on carbon adsorbents, Zh. Fiz. Khim., 39 (1965) 1305–1317.
  48. M.A. Sahar, G.M. Somaia, Egyptian apricot stone (Prunus armeniaca) as a low cost and eco-friendly biosorbent for oxamyl removal from aqueous solutions, Am. J. Exp. Agri., 4(3) (2014) 302–321.
  49. O. Abdelwahab, Evaluation of the use of loofa activated carbons as potential adsorbents for aqueous solutions containing dye, Desalination, (2008) 257–236.
  50. V. Marija, K. Ana, B. Biljana, L. Zoran, L. Mila, Influence of different carbon monolith preparation parameters on pesticide adsorption, J. Serb. Chem. Soc., 78(10) (2013) 1617–1632.