References

  1. S. Saeid, P. Tolvanen, N. Kumara, K. Eränen, J. Peltonen, M. Peurla, J.P. Mikkola, A. Franz, T. Salmi, Advanced oxidation process for the removal of ibuprofen from aqueous solution: A non-catalytic and catalytic zonation study in a semi-batch reactor, Appl. Catal. B: Environ., 230 (2018) 77–90.
  2. K. Hikmat Hama Aziz, H. Miessner, S. Mueller, D. Kalass, D. Moeller, I. Khorshid, M. Amin, M. Rashid, Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis, and nonthermal plasma, Chem. Eng. J., 313 (2017) 1033–1041.
  3. A. Kruglova, P. Ahlgren, N. Korhonen, P. Rantanen, A. Mikola, R. Vahala, Biodegradation of ibuprofen, diclofenac and carbamazepine in nitrifying activated sludge under 12°C temperature conditions, Sci. Total. Environ., 499 (2014) 394–401.
  4. T.P. Van Boeckel, S. Gandra, A. Ashok, Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data, Lancet Infect Dis., 14 (2014) 742–750.
  5. A. Kebriaeezadeh, N. Nassiri Koopaei, A. Abdollahiasl, S. Nikfar, N. Mohamadi, Trend analysis of the pharmaceutical market in Iran; 1997–2010; policy implications for developing countries, DARU J. Pharm. Sci., 21 (2013) 52–60.
  6. B.K. González-Pérez, S.S.S. S. Sarma, Nandini Effects of selected pharmaceuticals (ibuprofen and amoxicillin) on the demography of Brachionus calyciflorus and Brachionus havanaensis (Rotifera), Egypt. J. Aquat. Res., 42 (2016) 341–347.
  7. M. Grzesiuk, E. Spijkerman, S.C. Lachmann, A. Wacker, Environmental concentrations of pharmaceuticals directly affect phytoplankton and effects propagate through trophic interactions, Ecotoxicol. Environ. Saf., 156 (2018) 271e278, European Commission. Common Implementation Strategy for the Water Framework Directive-Guidance Document No. 27-Technical Guidance for Deriving Environmental Quality Standards; European Commission Technical Report; EU: Brussels, Belgium, 2011.
  8. F. Mendez-Arriaga, R.A. Torres-Palmaa, C. Petriera, S. Esplugasd, J. Gimenezd, C. Pulgarinc, Pulgarinc ultrasonic treatment of water contaminated with ibuprofen, Water Res., 42 (2008) 4243–4248.
  9. S. Heydari, R. Mohammadzade Kakhki, Thermodynamic study of complex formation of b-cyclodextrin with ibuprofen by conductometric method and determination of ibuprofen in pharmaceutical drugs, Arab. J. Chem., 10 (2017) 1223–1226.
  10. S.E. Emad, M. Chaudhur, The feasibility of using combined TiO2 photocatalysis-SBR process for antibiotic wastewater treatment, Desalination, 272 (2011) 218–224.
  11. C. Miege, J.M. Choubert, L. Ribeiro, M. Eusebe, M. Coquery, Fate of pharmaceuticals and personal care products in wastewater treatment plants-conception of a database and first results, Environ. Pollut., 157 (2009) 1721–1726.
  12. A. Eslami, M.M. Amini, A.R. Yazdanbakhsh, A. Mohseni-Bandpei, A.A. Safari, A. Asadi, N, S co-doped TiO2 nanoparticles and nanosheets in simulated solar light for photocatalytic degradation of non-steroidal anti-inflammatory drugs in water: a comparative study, J. Chem. Technol. Biotechnol., 91 (2016) 2693–2704.
  13. N. Rastkari, A. Eslami, S. Nasseri, E. Piroti, A. Asadi, Optimizing parameters on nanophotocatalytic degradation of ibuprofen using UVC/ZnO processes by response surface methodology, Pol. J. Environ. Stud., 26 (2017) 785–794.
  14. S. Han, K. Choi, J. Kim, K. Ji, S. Kim, B. Ahn, J. Yun, K. Choi, J. Seong, X. Zhang, J.P. Giesy, Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka (Oryzias latipes) and freshwater cladocerans Daphnia magna and Moina macrocopa, Aquat. Toxicol., 98 (2010) 256–264.
  15. J. Schwaiger, H. Ferling, U. Mallow, H. Wintermayr, R.D. Negele, Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: Part I: Histopathological alterations and bioaccumulation in rainbow trout, Aquatic Toxicol., 10 (2004) 141–150.
  16. R. Triebskorn, H. Casper, A. Heyd, R. Ko. Eikemper, Ühler HR, J. Schwaiger, Toxic effects of the non-steroidal antiinflammatory drug diclofenac: Part II: Cytological effects in liver, kidney, gills, and intestine of rainbow trout (Oncorhynchus mykiss), Aquatic Toxicol., (2004) 151–166.
  17. O. Fatoki, B. Opeolu, Studies on the occurrence and quantification of phenolic endocrine disruptors in water, Sci. Res. Essay., (2009) 1415–1422.
  18. M. Pirsaheb, A. Asadi, M. Sillanpää, N. Farhadian, Application of carbon quantum dots to increase the activity of conventional photocatalysts: A systematic review, J. Mol. Liq., 271 (2018) 857–871.
  19. O. Gonzalez, C. Sans, S. Esplugas, Sulfamethoxazole abatement by photo-Fenton: toxicity, inhibition and biodegradability assessment of intermediates, Hazard. Mater., 146 (2007) 459–464.
  20. M.J. Quero-Pastor, M.C. Garrido-Perez, A. Acevedo, J.M. Quiroga, Ozonation of ibuprofen: a degradation and toxicity study, Sci. Total Environ., 467 (2014) 957–964.
  21. M.R. Doosti, R. Kargar, M.H. Sayadi, Water treatment using ultrasonic assistance: a review, Proc. Int. Acad. Ecol. Environ. Sci., 2 (2012) 96–110.
  22. H. Bahrami, A. Eslami, R. Nabizadeh, A. Mohseni-Bandpi, A. Asadi, M. Sillanpää, Degradation of trichloroethylene by sonophotolytic-activated persulfate processes: Optimization using response surface methodology, J. Clean. Prod., 198 (2018) 1210–1218.
  23. A. Eslami, A. Asadi, M. Meserghani, H. Bahrami, Optimization of sonochemical degradation of amoxicillin by sulfate radicals in aqueous solution using response surface methodology (RSM), J. Mol. Liq., 222 (2016) 739–744.
  24. S. Chong, G. Zhang, P. Zhang, N. Zhang, J. Ye, T. Huang, Y. Liu, Z.Wei, FeCeOx catalyzed ultrasonic degradation of diclofenac: Influencing factors, kinetics, and mechanism, Desal. Water Treat., 113 (2018) 319–325.
  25. M. Dehghani, Y. Kamali, F. Jamshidi, M. Ansari Shiri, M. Nozari, Contribution of H2O2 in ultrasonic systems for degradation of DR–81 dye from aqueous solutions, Desal. Water Treat., 107 (2018) 332–339.
  26. E. Nikfar, M.H. Dehghani, A.H. Mahvi, N. Rastkari, M. Asif, I. Tyagi, S. Agarwal, V.K. Gupta, Removal of Bisphenol A from aqueous solutions using ultrasonic waves and hydrogen peroxide, J. Mol. Liq., 213 (2016) 332–338.
  27. P. Saritha, C. Aparna, V. Himabindu, Y. Anjaneyulu, Comparision of various advanced oxidation processes for the degradation of 4-chloro-2-nitrophenol, J. Hazard. Mater., 149 (2007) 609–614.
  28. A. Naghizadeh, Regeneration of carbon nanotubes exhausted with humic acid using electro-Fenton technology, Arab. J. Sci. Eng., 41 (2016) 155–161.
  29. A. Naghizadeh, F. Momeni, E. Derakhshani. Efficiency of ultrasonic process in regeneration of graphene nanoparticles saturated with humic acid, Desal. Water. Treat., 70 (2017) 290–293.
  30. A. Naghizadeh, S. Nasseri, A.H. Mahvi, A. Rashidi, R. Nabizadeh, R. Rezaei Kalantary, Fenton regeneration of humic acid-spent carbon nanotubes, Desal. Water Treat., 54 (2015) 2490–2495.
  31. A.B. Pandit, P.R. Gogate, S. Majumdar, Ultrasonic degradation of 2:4:6 trichlorophenol in presence of TiO2 catalyst, Ultrason. Sonochem., 8 (2001) 227.
  32. A. Dargahi, M. Pirsaheb, S. Hazrati, M. Fazlzadehdavil, R. Khamutian, T. Amirian, Evaluating efficiency of H2O2 on removal of organic matter from drinking water, Desal. Water Treat., 54 (2015) 1589–1593.
  33. S.A. Hapse, P.T. Kadaskar, A.S. Shirsath, Difference spectrophotometric estimation and validation of ibuprofen from bulk and tablet dosage form, Der. Pharm. Lettre., 3 (2011) 18–23.
  34. A. Farooghi, M.H. Sayadi, M.R. Rezaei, A. Allahresani, An efficient removal of lead from aqueous solutions using FeNi3@SiO2 magnetic nanocomposites, Surf. Interf., 10 (2018) 58–64.
  35. S. Chakma, V.S. Moholkar, Investigations in synergism of hybrid advanced oxidation processes with combinations of sonolysis + Fenton process + UV for degradation of bisphenol A, Ind. Eng. Chem. Res., 53 (2014) 6855–6865.
  36. K. Kang, M. Jang, M. Cui, P. Qiu, S. Na, Y. Son, J. Khim, Enhanced sonocatalytic treatment of ibuprofen by mechanical mixing and reusable magnetic core titanium dioxide, Chem. Eng. J., 264 (2015) 522–530.
  37. M. Hamadanian, A. Sadeghi Sarabi, A. Mohammadi Mehra, V. Jabbari, Photocatalyst Cr-doped titanium oxide nanoparticles: Fabrication, characterization, and investigation of the effect of doping on methyl orange dye degradation, Mater. Sci. Semicond. Proc., 21 (2014) 161–166.
  38. C. Petrier, B. David, S. Laguian, Ultrasonic degradation at 20 kHz and 500 kHz of atrazine and pentachlorophenol in aqueous solution: preliminary results, Chemosphere, 32 (1996) 1709–1718.
  39. A. Francony, C. Petrier, Francony, C. Petrier, Sonochemical degradation of carbon tetrachloride in aqueous solution at two frequencies: 20 kHz and 500 kHz, Ultrason. Sonochem., 3 (1996) S77–S82.
  40. M. Klavarioti, D. Mantzavinos, D. Kassinos, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes, Environ. Int., 35 (2009) 402–417.
  41. M.H. Sayadi, N. Ahmadpour, The ultrasonic of drug removal using catalysts from aqueous solutions, J. Environ. Sci. Nat. Resour., 5 (2017) 555–668.
  42. C. Petrier, A. Jeunet, J.L. Luche, G. Reverdy, Unexpected frequency – effects on the rate of oxidative process induced by ultrasound, J. Am. Chem. Soc., 114 (1992) 3148–3150.
  43. A. Ziylan, Y. Koltypin, A. Gedanken, N.H. Ince, More on sonolytic and sonocatalytic decomposition of Diclofenac using zero-valent iron, J. Ultrason Sonochem., 20 (2013) 580–586.
  44. R. Kidak, S. Dogan, Degradation of trace concentrations of alachlor by medium frequency ultrasound, Chem. Eng. Process., 89 (2015) 19–27.
  45. L.H. Thompson, L.K. Doraiswamy, Sonochemistry: science and engineering, Ind. Eng. Chem. Res., 38 (1999) 1215–1249.
  46. C. Petrier, A. Francony, Ultrasonic wastewater treatment: incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation, J. Ultrason. Sonochem., 4 (1997) 295–300.
  47. E.S. Elmolla, M. Chaudhuri, Comparison of different advanced oxidation processes for treatment of antibiotic aqueous solution, Desalination, 256 (2010) 43–47.
  48. O.S. Ayanda, S.M. Nelana, E.B. Naidoo, Ultrasonic degradation of aqueous phenolsulfonphthalein (PSP) in the presence of nano-Fe/H2O2, Ultrason. Sonochem., 47 (2018) 29–35.
  49. A.R. Rahmani, H. Rezaeivahidian, M. Almasi, H.A., Comparative study on the removal of phenol from aqueous solutions by electro–Fenton and electro–persulfate processes using iron electrodes, Res. Chem. Intermed., 41 (2015) 1–10.
  50. M. Hosseini, G.H. Safari, H. Kamani, J. Jaafari, M. Ghanbarain, A.H. Mahvi, Sonocatalytic degradation of tetracycline antibiotic in aqueous solution by sonocatalysis, Toxicol. Environ. Chem., 95 (2013) 1680–1689.
  51. D. Guettaia, M. Mokhtari, J.Y. Hihn, Y. Stortz, M. Franchi, M. Euvrard, Sonochemical and photochemical elimination of ibuprofen in aqueous solution, Mater. Environ. Sci., (2017) 3151–3161.
  52. T. Mason, J.P. Lorimer, Applied sonochemistry: Uses in chemistry and processing, Wiley-VCH Verlag GmbH, Germany, 2002.
  53. S. Haddadi, S. Naseri, F. Vaezi, A.H. Mahvi, R. Nabizadeh, Determining the effects of various factors on the effectiveness of ultrasonic treatment of secondary effluent, J. Water Wastewater, 18(3) (2007) 31–38.
  54. A. Yazdani, M.H. Sayadi, Sonochemical degradation of azithromycin in aqueous solution, Environ. Eng. Manag. J., 5 (2018) 85–92.
  55. H. Wei, D. Hu, J. Su, K. Li, Intensification of levofloxacin sono-degradation in a US/H2O2 system with Fe3O4 magnetic nanoparticles, Chinese J. Chem. Eng., 23 (2015) 296–302.
  56. X. Ma, Y. Cheng, Y. Ge, H. Wu, Q. Li, N. Gao, J. Deng, Ultrasound-enhanced nanosized zero-valent copper activation of hydrogen peroxide for the degradation of norfloxacin, Ultrason. Sonochem., 40 (2018) 763–772.
  57. O.S. Ayanda, S.M. Nelana, L.F. Petrik, E.B. Naidoo, Nano-TiO2, ultrasound and sequential nano-TiO2/ultrasonic degradation of N-acetyl-para-aminophenol from aqueous solution, J. Water Health., 15(6) (2017) 1015–1027.
  58. A.B. Pandit, P.R. Gogate, S.U. Mujumdar, Degradation of 2:4:6 trichloro phenol in presence of TiO2 catalyst, Ultrason. Sonochem., 8 (2001) 227–231.
  59. M. Salehi, H. Hashemipour, M. Mirzaee, Experimental study of influencing factors and kinetics in catalytic removal of methylene blue with TiO2 nanopowder, Amer. J. Environ. Eng., 2 (2012) 1–7.
  60. N. Daneshvar, N. Mohammad Rabbani, M.-A Modirshahla, M.A. Behnajady, Photooxidative degradation of Acid Red 27 (AR27): Modeling of reaction kinetic and influence of operational parameters, J. Environ. Sci. Health. A., 39 (2004) 2319–2332.
  61. H. Amin, A. Amer, A. Fecky, I. Ibrahim, Treatment of textile wastewater using H2O2/UV system, Physicochem. Probl. Miner. Process., 42 (2008) 17–28.
  62. W. Chu, Modeling the quantum yields of herbicide 2,4-D decay in UV/H2O2 process, Chemosphere, 44 (2001) 935–941.
  63. M.Y. Ghaly, G. Hartel, R. Mayer, R. Haseneder, Photochemical oxidation of p-chlorophenol by UV/H2O2 and photo-Fenton process, a comparative study, Waste. Manage., 21 (2001) 41–47.
  64. Z. Guo, R. Feng, J. Li, Z. Zheng, Y. Zheng, Degradation of 2,4-dinitrophenol by combining sonolysis and different additives, Hazard. Mater., 158 (2008) 164–169.
  65. P.R. Gogate, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Ultrason. Sonochem., 15 (2008) 1–15.
  66. M.P. Rayaroth, U.K. Aravind, C.T. Aravindakumar, Degradation of pharmaceuticals by ultrasound-based advanced oxidation process, Environ. Chem. Lett., 14 (2016) 259–290.
  67. S.N. Nam, S.K. Han, J.W. Kang, H. Choi, Kinetics and mechanisms of the sonolytic destruction of non-volatile organic compounds: investigation of the sonochemical reaction zone using several OH monitoring techniques, Ultrason. Sonochem., 10 (2003) 139–147.
  68. M. Goel, H. Hongqiang, A.S. Mujumdar, M.B. Ray, Sonochemical decomposition of volatile and non-volatile organic compounds — a comparative study, Water. Res., 38 (2004) 4247–4261.
  69. A. Ghauch, A. Tuqan, H.A. Assi, Antibiotic removal from water: elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles, Environ. Pollution., 157(5)(2009) 1626–1635.
  70. Y. Jiang, C.H. Petrier, T.D. Waite, Effect of pH on the ultrasonic degradation of ionic aromatic compounds in aqueos solution, Ultrason. Sonochem., 9(3) (2002) 163–168.
  71. G.H. H.M. Safari, H. Kamali, R. Moradirad, A.H. Mahvi, Photocatalytic degradation of tetracycline antibiotic from aqueous solutions using UV/TiO2 and UV/H2O2/TiO2, Iran J. Health Environ., 5(3) (2014) 203–213.
  72. B. Karagozoglu, M. Tasdemir, E. Demirbas, M. Kobya, The adsorption of basic dye (Astrazon Blue FGRL) from aqueous solutions onto sepiolite, fly ash and apricot shell activated carbon: Kinetic and equilibrium studies, J. Hazard. Mater., 147 (2007) 297–306.
  73. M. Hosseini, A.H. Mahvi, J. Jaafari, H. Kamani, G.H. Safari, Iranian J. Health Environ., 8 (2015) 141–152.
  74. F. Madhavan, M. Grieser, Ashokkumar, Combined advanced oxidation processes for the synergistic degradation of ibuprofen in aqueous environments, J. Hazard. Mater., 178 (2010) 202–208.
  75. Y.L. Pang, A.Z. Abdullah, S. Bhatia, Review on sonochemical methods in the presence of catalysts and chemical additives for treatment of organic pollutants in wastewater, Desalination, 277 (2011) 1–14.
  76. X. Wang, Y. Wang, D. Li, Degradation of tetracycline in water by ultrasonic irradiation, Water. Sci. Technol., 67 (2013) 715–721.
  77. C. Jakopitsch, G. Regelsberger, P.G. Furtmuller, F. Ruker, G.A. Peschek, C. Obinger, Catalase-peroxidase from Synechocystis is capable of chlorination and bromination reactions, Biochemical Biophysical. Res. Commun., 287 (2001) 682–687.
  78. H. Weisburger, Comments on the history and importance of aromatic and heterocyclic amines in public health, Mutat. Res., 507 (2002) 9–20.