References

  1. R.R. Dash, A. Gaur, G. Balomajumder, Cyanide in industrial wastewaters and its removal: a review on biotreatment, J. Hazard. Mater., 163 (2009) 1–11.
  2. R.R. Dash, C. Balomajumder, A. Kumar, Removal of cyanide from water and wastewater using granular activated carbon, Chem. Eng. J., 146 (2009) 408–413.
  3. C. Karunakaran, Semiconductor catalyzed photodetoxification of cyanide, in: S. Kaneco (Ed.), Photo/Electrochemistry & Photobiology in the Environment,Energy and Fuel, Research Signpost, Trivandrum, 2006, pp. 259–294.
  4. J. Marugan, R. van Grieken, A.E. Cassano, O.M. Alfano, Scaling-up of slurry reactors for the photocatalytic oxidation of cyanide with TiO2 and silica-supported TiO2 suspensions, Catal. Today, 144 (2009) 87–93.
  5. J. Marugan, R. van Grieken, A.E. Cassano, O.M. Alfano, Intrinsic kinetic modeling with explicit radiation absorption effects of the photocatalytic oxidation of cyanide with TiO2 and silica-supported TiO2 suspensions, Appl. Catal. B, 85 (2008) 48–60.
  6. A.A. Ismail, I.A. Ibrahim, M.S. Ahmed, R.M. Mohamed, H. El-Shall, Sol-gel synthesis of titania-silica photocatalyst for cyanide photodegradation, J. Photochem. Photobiol. A, 163 (2004) 445–451.
  7. A. Bozzi, I. Guasaquillo, J. Kiwi, Accelerated removal of cyanide from industrial effluents by supported TiO2 photocatalysts, Appl. Catal. B, 51 (2004) 203–211.
  8. K. Chiang, R. Amal, T. Tran, Photocatalytic oxidation of cyanide: kinetic and mechanistic studies, J. Mol. Catal. A, 193 (2003) 285–297.
  9. J. Aguado, R. van Grieken, M.J. Lopez-Munoz, J. Marugan, Removal of cyanides in wastewater by supported TiO2-based photocatalysts, Catal. Today, 75 (2002) 95–102.
  10. R.M. Mohamed, E. Aazam, Effect of Sn loading on the photocatalytic aniline synthesis activity of TiO2 nanospheres, J. Alloys Compd., 595 (2014) 8–13 .
  11. A.A. Ismail, D.W. Bahnemann, Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms, J. Mater. Chem., 21 (2011) 11686–11707.
  12. S. Chang, R. Doong, Interband transitions in sol−gel-derived ZrO2 films under different calcination conditions, Chem. Mater., 19 (2007) 4804–4810.
  13. H. Koohestani, S.K. Sadrnezhaad , Improvement in TiO2 photocatalytic performance by ZrO2 nanocompositing and immobilizing , Desal. Water Treat., 57 (2016) 28450–28459.
  14. J. Zhang, Y. Gao, X. Jia, J. Wang, Z. Chen, Y. Xu, Oxygen vacancy-rich mesoporous ZrO2 with remarkably enhanced visible-light photocatalytic performance, Sol. Energy Mater. Sol. Cells, 182 (2018) 113–120.
  15. J.A. Navio, M.C. Hidalgo, G. Colon, S.G. Botta, M.I. Litter, Preparation and physicochemical properties of ZrO2 and Fe/ZrO2 prepared by a sol−gel technique, Langmuir, 17 (2001) 202–210.
  16. K. Kaviyarasu, L. Kotsedi, A. Simo, X. Fuku, T. Mola, J. Kennedy, M. Maaza, Photocatalytic activity of ZrO2 doped lead dioxide nanocomposites: Investigation of structural and optical microscopy of RhB organic dye, Appl. Surf. Sci., 421 (2017) 234–239.
  17. M. Anpo, T. Nomura, J. Kondo, K. Domen, K.I. Mayura, T. Onishi, Photoluminescence and FT-IR studies of the dissociative adsorption of H2 on the active ZrO2 catalyst and its role in the hydrogenation of CO, Res. Chem. Intermed., 13 (1990) 195–202.
  18. S. Chang, R. Doong, The effect of chemical states of dopants on the microstructures and band gaps of metal-doped ZrO2 thin films at different temperatures, J. Phys. Chem. B, 108 (2004) 18098–18103.
  19. A. Mondal, B. Adhikary, D. Mukherjee, Room-temperature synthesis of air stable cobalt nanoparticles and their use as catalyst for methyl orange dye degradation, Colloids Surf. A Physicochem. Eng. Asp., 482 (2015) 248–257.
  20. J. Almeida, V. Lucia, A. Saraiva, T. Regina, M. Zani, S. Carvalho, Characterization and photocatalytic evaluation of ZnO–Co3O4 particles obtained by high energy milling Part II: Photocatalytic properties, Ceram. Int., 42 (2016) 3485–3490.
  21. G. Dai, S. Liu, Y. Liang, T. Luo, Synthesis and enhanced photoelectrocatalytic activity of p-n junction Co3O4/TiO2 nanotube arrays, Appl. Surf. Sci., 264 (2013) 157–161.
  22. Vog. A. I. Vogel, Quantitative Inorganic Analysis, Longmans, London, (1978).
  23. L. He-jian, Z. Li, Z. Tian-qi, X. Xiu-feng, Effect of preparation parameters on the catalytic performance of hydrothermally synthesized Co3O4 in the decomposition of N2O, J. Fuel Chem. Technol., 46(6) (2018) 717–724.
  24. K. Fan, Z. Jin, G. Wang, H. Yang, D. Liu, H. Hu, G. Lu, Y. Bi, Distinctive organized molecular assemble of MoS2, MOF and Co3O4, for efficient dye-sensitized photocatalytic H2 evolution, Catal. Sci. Technol., 8 (2018) 2352.
  25. C. S. Chua, D. Ansovini, C.J.J. Lee, Y.T. Teng, L.T. Ong, D. Chi, T.S.A. Hor, R. Rajab, Y.-F. Lim, The effect of crystallinity on photocatalytic performance of Co3O4 water-splitting cocatalysts, Phys. Chem. Chem. Phys., 18 (2016) 5172.