References

  1. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69–96.
  2. M. Mehrjouei, S. Muller, D. Moller, A review on photocatalytic ozonation used for the treatment of water and wastewater, Chem. Eng. J., 263 (2015) 209–219.
  3. Z.M. He, Y.M. Xia, B. Tang, X.F. Jiang, J.B. Su, Fabrication and photocatalytic property of ZnO/Cu2O core-shell nanocomposites, Mater. Lett., 184 (2016) 148–151.
  4. Y.C. Ye, H. Yang, H.M. Zhang, J.L. Jiang, A promising Ag2CrO4/LaFeO3 heterojunction photocatalyst applied to photo-Fenton degradation of RhB, Environ. Technol., (DOI: 10.1080/09593330.2018.1538261).
  5. Y. Guo, J. Wei, Y. Liu, Y.L. Liu, T.Y. Yang, Z. Xu, Surfactant-tuned phase structure and morphologies of Cu2ZnSnS4 hierarchical microstructures and their visible-light photocatalytic activities, Nanoscale Res. Lett., 12 (2017) 181.
  6. Y.M. Xia, Z.M. He, K.J. Hu, B. Tang, J.B. Su, Y. Liu, X.P. Li, Fabrication of n-SrTiO3/p-Cu2O heterojunction composites with enhanced photocatalytic performance, J. Alloy. Compd., 753 (2018) 356–363.
  7. X.A. Dong, W.D. Zhang, Y.J. Sun, J.Y. Li, W.L. Cen, Z.H. Cui, H.W. Huang, F. Dong, Visible-light-induced charge transfer pathway and photocatalysis mechanism on Bi semimetal@defective BiOBr hierarchical microspheres, J. Catal., 357 (2018) 41–50.
  8. X.W. Li, W.W. Zhang, W. Cui, Y.J. Sun, G.M. Jiang, Y.X. Zhang, H.W. Huang, F. Dong, Bismuth spheres assembled on graphene oxide: Directional charge transfer enhances plasmonic photocatalysis and in situ DRIFTS studies, Appl. Catal. B-Environ., 221 (2018) 482–489.
  9. C.S. Uyguner-Demirel, N.C. Birben, M. Bekbolet, Elucidation of background organic matter matrix effect on photocatalytic treatment of contaminants using TiO2: A review, Catal. Today, 284 (2017) 202–214.
  10. S. Challagulla, R. Nagarjuna, S. Roy, R. Ganesan, Scalable free-radical polymerization based sol-gel synthesis of SrTiO3 and its photocatalytic activity, Chemistry Select, 2 (2017) 4836–4842.
  11. Y.X. Yan, H. Yang, X.X. Zhao, H.M. Zhang, J.L. Jiang, A hydrothermal route to the synthesis of CaTiO3 nanocuboids using P25 as the titanium source, J. Electron. Mater., 47 (2018) 3045–3050.
  12. C.K. Chen, S.X. Zhao, Q.L. Lu, K. Luo, X.H. Zhang, C.W. Nan, Topochemical synthesis and photocatalytic activity of 3D hierarchical BaTiO3 microspheres constructed from crystal-axis- oriented nanosheets, Dalton Trans., 46 (2017) 5017–5024.
  13. Z. Chen, H. Jiang, W. Jin, C. Shi, Enhanced photocatalytic performance over Bi4Ti3O12 nanosheets with controllable size and exposed {001} facets for Rhodamine B degradation, Appl. Catal. B-Environ., 180 (2016) 698–706.
  14. S. Yadav, G. Jaiswar, Review on undoped/doped TiO2 nanomaterial; synthesis and photocatalytic and antimicrobial activity, J. Chin. Chem. Soc., 64 (2017) 103–116.
  15. Y.B. Liu, G.Q. Zhu, J.Z. Gao, M. Hojamberdiev, R.L. Zhu, X.M. Wei, Q.M. Guo, P. Liu, Enhanced photocatalytic activity of Bi4Ti3O12 nanosheets by Fe3+-doping and the addition of Au nanoparticles: photodegradation of phenol and bisphenol A, Appl. Catal. B-Environ., 200 (2017) 72–82.
  16. A. Golabiewska, W. Lisowski, M. Jarek, G. Nowaczyk, M. Michalska, S. Jurga, A. Zaleska-Medynska, The effect of metals content on the photocatalytic activity of TiO2 modified by Pt/Au bimetallic nanoparticles prepared by sol-gel method, Mol. Catal., 442 (2017) 154–163.
  17. D.P. Dutta, A.K. Tyagi, Facile sonochemical synthesis of Ag modified Bi4Ti3O12 nanoparticles with enhanced photocatalytic activity under visible light, Mater. Res. Bull., 74 (2016) 397–407.
  18. C.X. Zheng, H. Yang, Assembly of Ag3PO4 nanoparticles on rose flower-like Bi2WO6 hierarchical architectures for achieving high photocatalytic performance, J. Mater. Sci.-Mater. Electron., 29 (2018) 9291–9300.
  19. Y.M. Xia, Z.M. He, J.B. Su, B. Tang, K.J. Hu, Y.L. Lu, S.P. Sun, X.P. Li, Fabrication of magnetically separable NiFe2O4/BiOI nanocomposites with enhanced photocatalytic performance under visible-light irradiation, RSC Adv., 8 (2018) 4284–4294.
  20. G. Liu, H.G. Yang, J. Pan, Y.Q. Yang, G.Q. Lu, H.M. Cheng, Titanium dioxide crystals with tailored facets, Chem. Rev., 114 (2014) 9559–9612.
  21. F. Wang, H. Yang, H.M. Zhang, J.L. Jiang, Growth process and enhanced photocatalytic performance of CuBi2O4 hierarchical microcuboids decorated with AuAg alloy nanoparticles, J. Mater. Sci.-Mater. Electron., 29 (2018) 1304–1316.
  22. J. Pan, G. Liu, G.Q. Lu, H.M. Cheng, On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals, Angew. Chem. Int. Ed., 50 (2011) 2133–2137.
  23. Y. Bi, S. Ouyang, N. Umezawa, J. Cao, J. Ye, Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties, J. Am. Chem. Soc., 133 (2011) 6490–6492.
  24. J. Jiang, K. Zhao, X. Xiao, L. Zhang, Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets, J. Am. Chem. Soc., 134 (2012) 4473–4476.
  25. D. Ariyanti, L. Mills, J. Dong, Y. Yao, W. Gao, NaBH4 modified TiO2: Defect site enhancement related to its photocatalytic activity, Mate. Chem. Phys., 199 (2017) 571–576.
  26. L.J. Di, H. Yang, T. Xian, X.J. Chen, Enhanced photocatalytic activity of NaBH4 reduced BiFeO3 nanoparticles for rhodamine B decolorization, Materials, 10 (2017) 1118.
  27. H.Q. Tan, Z. Zhao, W.B. Zhu, E.N. Coker, B.S. Li, M. Zheng, W.X. Yu, H.Y. Fan, Z.C. Sun, Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO3, ACS Appl. Mater. Inter., 6 (2014) 19184−19190.
  28. Y.H. Lv, W.Q. Yao, R.L. Zong, Y.F. Zhu, Fabrication of wide-range-visible photocatalyst Bi2WO6−x nanoplates via surface oxygen vacancies, Sci. Rep., 6 (2016) 19347.
  29. A. Tayyebi, T. Soltani, H. Hong, B.K. Lee, Improved photocatalytic and photoelectrochemical performance of monoclinic bismuth vanadate by surface defect states (Bi1−xVO4), J. Colloid Interf. Sci., 514 (2018) 565–575.
  30. Y.C. Huang, B. Long, H.B. Li, M.S. Balogun, Z.B. Rui, Y.X. Tong, H.B. Ji, Enhancing the photocatalytic performance of BiOClxI1–x by introducing surface disorders and Bi nanoparticles as cocatalyst, Adv. Mater. Interf., 2 (2015) 1500249.
  31. Y.X. Yan, H. Yang, X.X. Zhao, R.S. Li, X.X. Wang, Enhanced photocatalytic activity of surface disorder-engineered CaTiO3, Mater. Res. Bull., 105 (2018) 286–290.
  32. W. Wei, Y. Dai, B.B. Huang, First-principles characterization of Bi-based photocatalysts: Bi12TiO20, Bi2Ti2O7, and Bi4Ti3O12, J. Phys. Chem. C, 113 (2009) 5658–5663.
  33. M. Villegas, A.C. Caballero, T. Jardiel, C. Arago, J. Maudes, I. Caro, Evaluation of piezoelectric properties of Bi4Ti3O12 based ceramics at high temperature, Ferroelectrics, 393 (2009) 44–53.
  34. D. Urushihara, M. Komabuchi, N. Ishizawa, M. Iwata, K. Fukuda, T. Asaka, Direct observation of the ferroelectric polarization in the layered perovskite Bi4Ti3O12, J. Appl. Phys., 120 (2016) 142117.
  35. H.C. He, Z.L. He, Z.L. Jiang, J. Wang, T. Liu, N. Wang, A controllable photoresponse and photovoltaic performance in Bi4Ti3O12 ferroelectric thin films, J. Alloy. Compd., 694 (2017) 998–1003.
  36. K. Qian, Z.F. Jiang, H.Shi, W. Wei, C.Z. Zhu, J.M. Xie, Constructing mesoporous Bi4Ti3O12 with enhanced visible light photocatalytic activity, Mater. Lett., 183 (2016) 303–306.
  37. H. He, J. Yin, Y. Lia, Y. Zhang, H. Qiu, J. Xu, T. Xu, C. Wang, Size controllable synthesis of single-crystal ferroelectric Bi4Ti3O12 nanosheet dominated with {001} facets toward enhanced visible- light-driven photocatalytic activities, Appl. Catal. B-Environ., 156–157 (2014) 35–43.
  38. X.X. Zhao, H. Yang, Z.M. Cui, X.X. Wang, Z. Yi, Growth process and CQDs-modified Bi4Ti3O12 square plates with enhanced photocatalytic performance, Micromachines, 10 (2019) 66.
  39. W. Zhao, Z. Jia, E. Lei, L.G. Wang, Z.Y. Li, Y.J. Dai, Photocatalytic degradation efficacy of Bi4Ti3O12 micro-scale platelets over methylene blue under visible light, J. Phys. Chem. Solids, 74 (2013) 1604–1607.
  40. D.F. Hou, X.L. Hu, P. Hu, W. Zhang, M.F. Zhang, Y.H. Huang, Bi4Ti3O12 nanofibers–BiOI nanosheets p–n junction: facile synthesis and enhanced visible-light photocatalytic activity, Nanoscale, 5 (2013) 9764–9772.
  41. X. Lin, Q.F. Guan, T.T. Liu, Y. Zhang, C.J. Zou, Controllable synthesis and photocatalytic activity of Bi4Ti3O12 particles with different morphologies, Acta Phys. Chim. Sin., 29 (2013) 411–417.
  42. Z.W. Chen, X.Y. Jiang, C.B. Zhu, C.K. Shi, Chromium-modified Bi4Ti3O12 photocatalyst: Application for hydrogen evolution and pollutant degradation, Appl. Catal. B-Environ., 199 (2016) 241–251.
  43. C.X. Zheng, H. Yang, Z.M. Cui, H.M. Zhang, X.X. Wang, A novel Bi4Ti3O12/Ag3O4 heterojunction photocatalyst with enhanced photocatalytic performance, Nanoscale Res. Lett., 12 (2017) 608.
  44. B. Weng, F. Xu, F. Yu, Fabrication of hierarchical Bi4Ti3O12 nanosheets on carbon fibers with improved photocatalytic activity, Mater. Lett., 145 (2015) 70–73.
  45. G. Odling, E. Chatzisymeon, N. Robertson, Sequential ionic layer adsorption and reaction (SILAR) deposition of Bi4Ti3O12 on TiO2: an enhanced and stable photocatalytic system for water purification, Catal. Sci. Technol., 8 (2018) 829–839.
  46. B. Shi, H. Yin, J. Gong, Q. Nie, Ag/AgCl decorated Bi4Ti3O12 nanosheet with highly exposed (001) facets for enhanced photocatalytic degradation of Rhodamine B, Carbamazepine and Tetracycline, Appl. Surf. Sci., 419 (2017) 614–623.
  47. Z.M. Cui, H. Yang, X.X. Zhao, Enhanced photocatalytic performance of g-C3N4/Bi4Ti3O12 heterojunction, Mater. Sci. Eng. B, 229 (2018) 160–172.
  48. Y.W. Zhao, H.Q. Fan, K. Fu, L.T. Ma, M.M. Li, J.W. Fang, Intrinsic electric field assisted polymeric graphitic carbon nitride coupled with Bi4Ti3O12/Bi2Ti2O7 heterostructure nanofibers toward enhanced photocatalytic hydrogen evolution, Int. J. Hydrogen Energ., 41 (2016) 16913–16926.
  49. X.B. Meng, J. Miao, Y. Zhao, S.Z. Wu, X.G. Xu, S.G. Wang, Y. Jiang, Enhanced ferroelectric and UV photocatalytic properties in a Bi4Ti3O12@ZnO core-shelled nanostructure, J. Mater. Sci.-Mater. Electron., 25 (2014) 1423–1428.
  50. Y. Liu, M.Y. Zhang, L. Li, X.T. Zhang, In situ ion exchange synthesis of the Bi4Ti3O12/Bi2S3 heterostructure with enhanced photocatalytic activity, Catal. Commun., 60 (2015) 23–26.
  51. X.M. Gao, Y. Dai, Y. Zhang, Z.H. Wang, F. Fu, Preparation and photocatalytic performance of spherical-like Bi4Ti3O12 Composite, Chin. J. Inorg. Chem., 33 (2017) 455–462.
  52. X.X. Zhao, H. Yang, S.H. Li, Z.M. Cui, C.R. Zhang, High photocatalytic activity of large-sized Bi4Ti3O12 square nanosheets with highly exposed (010) facet, Mater. Res. Bull., 107 (2018) 180–188.
  53. Y.C. Ye, H. Yang, X.X. Wang, W.J. Feng, Photocatalytic, Fenton and photo-Fenton degradation of RhB over Z-scheme g-C3N4/LaFeO3 heterojunction photocatalysts, Mater. Sci. Semicond. Proc., 82 (2018) 14–24.
  54. K.S.W. Sing, R.T. Williams, Physisorption hysteresis loops and the characterization of nanoporous materials, Adsorpt. Sci. Technol., 22 (2004) 773–782.
  55. F. Dong, T. Xiong, S. Yan, H.Q. Wang, Y.J. Sun, Y.X. Zhang, H.W. Huang, Z.B. Wu, Facets and defects cooperatively promote visible light plasmonic photocatalysis with Bi nanowires@BiOCl nanosheets, J. Catal., 344 (2016) 401–410.
  56. H. Yang, Q.Q. Liu, F.Y. Li, C.Q. Jin, R.C. Yu, Symmetry of unoccupied electronic states in the high-Tc superconductor Sr2CuO2+δCl2–y studied by electron energy-loss spectroscopy, Appl. Phys. Lett., 88 (2006) 082502.
  57. H. Wang, W.D. Zhang, X.W. Li, J.Y. Li, W.L. Cen, Q.Y. Li, F. Dong, Highly enhanced visible light photocatalysis and in situ FT-IR studies on Bi metal@defective BiOCl hierarchical microspheres, Appl. Catal. B-Environ., 225 (2018) 218–227.
  58. M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, R.S. Ruoff, Graphenebased ultracapacitors, Nano Lett., 8 (2008) 3498–3502.
  59. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review, Appl. Catal. B-Environ., 49 (2004) 1–14.
  60. L.J. Di, H. Yang, T. Xian, X.J. Chen, Construction of Z-scheme g-C3N4/CNT/Bi2Fe4O9 composites with improved simulated-sunlight photocatalytic activity for the dye degradation, Micromachines, 9 (2018) 613.
  61. L.J. Di, H. Yang, T. Xian, X.J. Chen, Facile synthesis and enhanced visible-light photocatalytic activity of novel p-Ag3PO4/n-BiFeO3 heterojunction composites for dye degradation, Nanoscale Res. Lett., 13 (2018) 257.
  62. F. Cardon, W. P. Gomes, On the determination of the flat-band potential of a semiconductor in contact with a metal or an electrolyte from the Mott-Schottky plot, J. Phys. D-Appl. Phys., 11 (1978) L63–L67.
  63. A. Fattah-alhosseini, Passivity of AISI 321 stainless steel in 0.5 M H2SO4 solution studied by Mott–Schottky analysis in conjunction with the point defect model, Arab. J. Chem., 9 (2016) S1342–S1348.
  64. X.X. Zhao, H. Yang, R.S. Li, Z.M. Cui, X.Q. Liu, Synthesis of heterojunction photocatalysts composed of Ag2S quantum dots combined with Bi4Ti3O12 nanosheets for the degradation of dyes, Environ. Sci. Pollut. Res. Int., (https://doi.org/10.1007/s11356-018-4050-3).
  65. S.E. Cummins, L.E. Cross, Electrical and optical properties of ferroelectric Bi4Ti3O12 single crystals, J. Appl. Phys., 39 (1968) 2268.