References

  1. A. Zafirakou, Sustainable urban water management, in: City Networks, Springer, 2017, pp. 227–258.
  2. E. Ayranci, N. Hoda, Adsorption kinetics and isotherms of pesticides onto activated carbon-cloth, Chemosphere, 60 (2005) 1600–1607.
  3. Y.-F. Guan, J.-Z. Wang, H.-G. Ni, E.Y. Zeng, Organochlorine pesticides and polychlorinated biphenyls in riverine runoff of the Pearl River Delta, China: assessment of mass loading, input source and environmental fate, Environ. Pollut., 157 (2009) 618–624.
  4. H. Nakata, M. Kawazoe, K. Arizono, S. Abe, T. Kitano, H. Shimada, W. Li, X. Ding, Organochlorine pesticides and polychlorinated biphenyl residues in foodstuffs and human tissues from China: status of contamination, historical trend, and human dietary exposure, Arch. Environ. Contam. Toxicol., 43 (2002) 0473–0480.
  5. B. Poon, C. Leung, C. Wong, M. Wong, Polychlorinated biphenyls and organochlorine pesticides in human adipose tissue and breast milk collected in Hong Kong, Arch. Environ. Contam. Toxicol., 49 (2005) 274–282.
  6. Y.-F. Jiang, X.-T. Wang, Y. Jia, F. Wang, M.-H. Wu, G.-Y. Sheng, J.-M. Fu, Occurrence, distribution and possible sources of organochlorine pesticides in agricultural soil of Shanghai, China, J. Hazard. Mater., 170 (2009) 989–997.
  7. R.M. Loewy, L.B. Monza, V.E. Kirs, M.C. Savini, Pesticide distribution in an agricultural environment in Argentina, J. Environ. Sci. Health, Part B, 46 (2011) 662–670.
  8. S.O. Wandiga, Use and distribution of organochlorine pesticides. The future in Africa, Pure Appl. Chem., 73 (2001) 1147– 1155.
  9. M.A. Khan, M. Iqbal, I. Ahmad, M.H. Soomro, M.A. Chaudhary, Economic evaluation of pesticide use externalities in the cotton zones of Punjab, Pakistan [with comments], The Pakistan Development Review, 2002, pp. 683-698.
  10. S.A.-M.-A.-S. Eqani, R.N. Malik, A. Mohammad, The level and distribution of selected organochlorine pesticides in sediments from River Chenab, Pakistan, Environmental Geochem. Health, 33 (2011) 33–47.
  11. M.I. Tariq, S. Afzal, I. Hussain, N. Sultana, Pesticides exposure in Pakistan: a review, Environ. Int., 33 (2007) 1107– 1122.
  12. N.K. Gopalan, S. Chenicherry, Fate and distribution of organochlorine insecticides (OCIs) in Palakkad soil, India, Sustain. Environ. Res., 28 (2018) 179–185.
  13. V. Zitko, Chlorinated pesticides: Aldrin, DDT, endrin, dieldrin, mirex, in: Persistent Organic Pollutants, Springer, 2003, pp. 47–90.
  14. S.A. Greene, R.P. Pohanish, Sittig’s Handbook of Pesticides and Agricultural Chemicals, 2005.
  15. D. Mohan, A. Sarswat, Y.S. Ok, C.U. Pittman Jr, Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review, Bioresour. Technol., 160 (2014) 191–202.
  16. D.D. Asouhidou, K.S. Triantafyllidis, N.K. Lazaridis, K.A. Matis, S.-S. Kim, T.J. Pinnavaia, Sorption of reactive dyes from aqueous solutions by ordered hexagonal and disordered mesoporous carbons, Micropor. Mesopor. Mater., 117 (2009) 257–267.
  17. Y. Matsui, Y. Fukuda, T. Inoue, T. Matsushita, Effect of natural organic matter on powdered activated carbon adsorption of trace contaminants: characteristics and mechanism of competitive adsorption, Water Res., 37 (2003) 4413–4424.
  18. A. Robers, M. Figura, P. Thiesen, B. Niemeyer, Desorption of odor-active compounds by microwaves, ultrasound, and water, AIChE J., 51 (2005) 502–510.
  19. D.B. Radić, M.M. Stanojević, M.O. Obradović, A.M. Jovović, Thermal analysis of physical and chemical changes occuring during regeneration of activated carbon, Thermal Sci., (2016) 48–48.
  20. G. Zhu, Synthesis of Zeolite@ MOF nanoporous composites as bifunctional catalysts, in, 2014.
  21. V.K. Saini, J. Pires, Development of metal organic framework-199 immobilized zeolite foam for adsorption of common indoor VOCs, J. Environ. Sci., 55 (2017) 321–330.
  22. S. Baradaran, M. Sohrabi, P.M. Bijani, S. Javid, Effect of pH on the synthesis of ZSM-5 zeolite using TEOS and performance of H-ZSM-5 catalyst in propane aromatization. Proc. 15th Iranian National Congress of Chemical Engineering (IChEC 2015).
  23. M. Kasture, P. Niphadkar, S. Kate, P. Godbole, K. Patil, G. Chaphekar, P. Joshi, Influence of silica and alumina source materials on the physicochemical characteristics of crystalline zeolite beta, in: Studies in Surface Science and Catalysis, Elsevier, 2004, pp. 3081–3087.
  24. T.V.N. Thi, C.L. Luu, T.C. Hoang, T. Nguyen, T.H. Bui, P.H.D. Nguyen, T.P.P. Thi, Synthesis of MOF-199 and application to CO2 adsorption, Adv. Nat. Sci.: Nanosci. Nanotechnol., 4 (2013) 035016.
  25. C. Petit, T.J. Bandosz, Enhanced adsorption of ammonia on metal-organic framework/graphite oxide composites: analysis of surface interactions, Adv. Funct. Mater., 20 (2010) 111–118.
  26. M. Gougazeh, J.-C. Buhl, Synthesis and characterization of zeolite A by hydrothermal transformation of natural Jordanian kaolin, J. Assoc. Arab Univ. Basic Appl. Sci., 15 (2014) 35–42.
  27. M. Treacy, J. Higgins, Collection of simulated XRD powder patterns for zeolites. Published on behalf of the Structure Commission of the ‘International Zeolite Association’, Powder Patterns, 203, 204 (2001).
  28. Q.M. Wang, D. Shen, M. Bülow, M.L. Lau, S. Deng, F.R. Fitch, N.O. Lemcoff, J. Semanscin, Metallo-organic molecular sieve for gas separation and purification, Micropor. Mesopor. Mater., 55 (2002) 217–230.
  29. P. Chowdhury, C. Bikkina, D. Meister, F. Dreisbach, S. Gumma, Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes, Micropor. Mesopor. Mater., 117 (2009) 406–413.
  30. K. Schlichte, T. Kratzke, S. Kaskel, Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2, Micropor. Mesopor. Mater., 73 (2004) 81–88.
  31. H. Dathe, E. Peringer, V. Roberts, A. Jentys, J.A. Lercher, Metal organic frameworks based on Cu2+ and benzene-1, 3, 5-tricarboxylate as host for SO2 trapping agents, Comptes Rendus Chimie., 8 (2005) 753–763.
  32. G. Liu, L. Li, X. Huang, S. Zheng, D. Xu, X. Xu, Y. Zhang, H. Lin, Determination of triazole pesticides in aqueous solution based on magnetic graphene oxide functionalized MOF-199 as solid phase extraction sorbents, Micropor. Mesopor. Mater., 270 (2018) 258–264.
  33. C. Petit, J. Burress, T.J. Bandosz, The synthesis and characterization of copper-based metal–organic framework/graphite oxide composites, Carbon., 49 (2011) 563–572.
  34. Z. Huo, X. Xu, Z. Lv, J. Song, M. He, Z. Li, Q. Wang, L. Yan, Y. Li, Thermal study of NaP zeolite with different morphologies, J. Thermal Anal. Calorim., 111 (2013) 365–369.
  35. G. Zeng, Y. Chen, L. Chen, P. Xiong, M. Wei, Hierarchical cerium oxide derived from metal-organic frameworks for high performance super capacitor electrodes, Electrochim. Acta, 222 (2016) 773–780.
  36. K. Sun, L. Li, X. Yu, L. Liu, Q. Meng, F. Wang, R. Zhang, Functionalization of mixed ligand metal-organic frameworks as the transport vehicles for drugs, J. Colloid Interf. Sci., 486 (2017) 128–135.
  37. J. He, Y. Zhang, Q. Pan, J. Yu, H. Ding, R. Xu, Three metal-organic frameworks prepared from mixed solvents of DMF and HAc, Micropor. Mesopor. Mater., 90 (2006) 145–152.
  38. S.K. Papageorgiou, E.P. Kouvelos, E.P. Favvas, A.A. Sapalidis, G.E. Romanos, F.K. Katsaros, Metal–carboxylate interactions in metal–alginate complexes studied with FTIR spectroscopy, Carbohyd. Res., 345 (2010) 469–473.
  39. C. Petit, B. Levasseur, B. Mendoza, T.J. Bandosz, Reactive adsorption of acidic gases on MOF/graphite oxide composites, Micropor. Mesopor. Mater., 154 (2012) 107–112.
  40. H.-L. Zubowa, H. Kosslick, D. Müller, M. Richter, L. Wilde, R. Fricke, Crystallization of phase-pure zeolite NaP from MCM-22-type gel compositions under microwave radiation, Micropor. Mesopor. Mater., 109 (2008) 542–548.
  41. L.V. Rees, S. Chandrasekhar, Hydrothermal reaction of kaolinite in presence offluoride ions at pH < 10, Zeolites, 13 (1993) 534–541.
  42. S. Loera-Serna, M.A. Oliver-Tolentino, M. de Lourdes López-Núñez, A. Santana-Cruz, A. Guzmán-Vargas, R. Cabrera-Sierra, H.I. Beltrán, J. Flores, Electrochemical behavior of [Cu3(BTC)2] metal–organic framework: the effect of the method of synthesis, J. Alloys Comp., 540 (2012) 113–120.
  43. Y. Li, J. Miao, X. Sun, J. Xiao, Y. Li, H. Wang, Q. Xia, Z. Li, Mechanochemical synthesis of Cu-BTC@ GO with enhanced water stability and toluene adsorption capacity, Chem. Eng. J., 298 (2016) 191–197.
  44. H. Li, Z. Lin, X. Zhou, X. Wang, Y. Li, H. Wang, Z. Li, Ultrafast room temperature synthesis of novel composites Imi@ Cu-BTC with improved stability against moisture, Chem. Eng. J., 307 (2017) 537–543.
  45. K. Shrivas, A. Ghosale, P. Maji, Advanced nanomaterials for the removal of chemical substances and microbes from contaminated and waste water, in: advanced nanomaterials for water engineering, treatment, and hydraulics, IGI Global, 2017, pp. 127–161.
  46. A.S. Al-Barrak, S.M. Elsaid, Pesticides removal from drainage waste water using some agricultural wastes, Pak. J. Biol. Sci., 8 (2005) 374–378.
  47. B. Seyhi, P. Drogui, P. Gortares-Moroyoqui, M.I. Estrada– Alvarado, L.H. Alvarez, Adsorption of an organochlorine pesticide using activated carbon produced from an agro– waste material, J. Chem. Technol. Biotechnol., 89 (2014) 1811– 1816.
  48. H. El Bakouri, J. Morillo, J. Usero, A. Ouassini, Potential use of organic waste substances as an ecological technique to reduce pesticide ground water contamination, J. Hydrology, 353 (2008) 335–342.
  49. F.A. Ansari, M. Alam, Kinetics and equilibrium isotherm studies of endrin and o, p DDT Adsorption on Low Cost Adsorbent, Parthenium hysterophorous Activated with Nitric Acid and Methanol.
  50. S. Kaur, S. Rani, R.K. Mahajan, Adsorption kinetics for the removal of hazardous dye congo red by biowaste materials as adsorbents, J. Chemistry, 2013 (2012).
  51. M.E. Argun, S. Dursun, C. Ozdemir, M. Karatas, Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics, J. Hazard. Mater., 141 (2007) 77–85.
  52. J. Zhu, S. Wei, H. Gu, S.B. Rapole, Q. Wang, Z. Luo, N. Haldolaarachchige, D.P. Young, Z. Guo, One-pot synthesis of magnetic graphene nanocomposites decorated with core@ double-shell nanoparticles for fast chromium removal, Environ. Sci. Technol., 46 (2011) 977–985.
  53. M. Ajmal, R.A.K. Rao, R. Ahmad, M.A. Khan, Adsorption studies on Parthenium hysterophorous weed: removal and recovery of Cd (II) from wastewater, J. Hazard. Mater., 135 (2006) 242–248.
  54. S. Lagergren, About the theory of so-called adsorption of soluble substances, Sven. Vetenskapsakad. Handingarl, 24 (1898) 1–39.
  55. Y.-S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  56. J. Lalley, C. Han, X. Li, D.D. Dionysiou, M.N. Nadagouda, Phosphate adsorption using modified iron oxide-based sorbents in lake water: kinetics, equilibrium, and column tests, Chem. Eng. J., 284 (2016) 1386–1396.
  57. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Amer. Chem. Soc., 40 (1918) 1361–1403.
  58. H. Freundlich, Über die adsorption in lösungen, Zeitschrift für physikalische Chemie, 57 (1907) 385–470.
  59. M. Dávila-Jiménez, M. Elizalde-González, A. Peláez-Cid, Adsorption interaction between natural adsorbents and textile dyes in aqueous solution, Colloids Surfaces A: Physicochem. Eng. Asp., 254 (2005) 107–114.