References

  1. H.J.H. Fenton, Oxidation of tartaric acid in the presence of iron, J. Chem. Soc., 65 (1894)899–910.
  2. F.J. Rivas, F.J. Beltrán, J. Frades, P. Buxeda, Oxidation of p-hydroxybenzoic acid by Fenton’s reagent, Water Res., 35(2) (2001) 387–396.
  3. H. Kusic, N. Koprivanac, S. Horvat, S. Bakija, A.L. Bozic, Modeling dye degradation kinetic using dark- and photo-fenton type processes, Chem. Eng. J., 155 (1009) 144–154.
  4. J.X. Guo, J. Liang, Y.H. Chu, M.C. Sun, H.Q. Yin, J.J. Li, Desulfurization activity of nickel supported on acid-treated activated carbons, Appl. Catal. A General, 421–422(15) (2012) 142–147.
  5. J.J. Luo, J. Lu, Q. Niu, X. Chen, Z. Wang, J. Zhang, Preparation and characterization of benzoic acid-modified activated carbon for removal of gaseous mercury chloride, Fuel, 160 (2015) 440–445.
  6. J. Ma, C. Li, L. Zhao, J. Zhang, J. Song, G. Zeng, Study on removal of elemental mercury from simulated flue gas over activated coke treated by acid, Appl. Surf. Sci., 329 (2015) 292–300.
  7. Y.H. Yang, Y.J. Lin, J.T. Feng, G.E. David, D.Q. Li, Preparation of supported Pb/Al2O3 catalysts by ultrasonic impregnation and their catalytic performance for anthraquinone hydrogenation, Chinese J. Catal., 27(4) (2006) 304–308.
  8. M. Danish, R. Hashim, M.N.M. Ibrahim, O. Sulaiman, Response surface methodology approach for methyl orange dye removal using optimized acacia mangium wood activated carbon, Wood Sci. Technol., 48(5) (2014) 1085–1105.
  9. R. Liou, S. Chen, CuO impregnated activated carbon for catalytic wet peroxide oxidation of phenol, J. Hazard. Mater., 172 (2009) 498–506.
  10. A. Quintanilla, J.A. Casas, J.A. Zazo, A.F. Mohedano, J.J. Rodriguez, Wet air oxidation of phenol at mild conditions with a Fe/activated carbon catalyst, Appl. Catal. B: Environ., 62 (2006) 115–120.
  11. S.B. Wang, G.Q. Lu, In: Carbon, 36 (1998) pp: 283–292.
  12. M. Danish, T. Ahmad, R. Hashim, N. Said, M.N. Akhtar, J. Mohamad-Saleh, Comparison of surface properties of wood biomass activated carbons and their application against rhodamine b and methylene blue dye, Surfaces Interfaces, 11 (2018).
  13. J.H. Zhou, Z.J. Sui, J. Zhu, P. Li, D. Chen, Y.C. Dai, Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR, Carbon, 45(4) (2007) 785–796.
  14. L.M. Wu, S. Sitamraju, J. Xiao, B. Liu, Z. Li, M.J. Janik, Effect of liquid-phase O3 oxidation of activated carbon on the adsorption, Chem. Eng., 242(1) (2014) 211–219.
  15. Y.C. Chiang, C.Y. Lee, H.C. Lee, Surface chemistry of polyacrylonitrile- and rayon-based activated carbon fibers after postheat treatment, Mater. Chem. Phys., 101(1) (2007) 199–210.
  16. Z. Tan, L. Su, J. Xiang, H. Zeng, Z. Liu, S. Hu, Gas-phase elemental mercury removal by novel carbon-based sorbents, Carbon, 50 (2012) 362–371.
  17. X. Liu, H. Yin, A. Lin, Z. Guo, Effective removal of phenol by using activated carbon supported iron prepared under microwave irradiation as a reusable heterogeneous Fenton-like catalyst, J. Environ. Chem. Eng., 5(1) (2017) 870–876.
  18. F.M. Duarte, F.J. Maldonado-Hódar, L.M. Madeira, Influence of the iron precursor in the preparation of heterogeneous Fe/ activated carbon Fenton-like catalysts, Appl. Catal. A: General, 458(10) (2013) 39–47.