References

  1. T.Y. Wong, S.-m. Lin, C.H. Poon, L.K. Leung, The licorice flavonoid isoliquiritigenin reduces DNA-binding activity of AhR in MCF-7 cells, Chem. Biol. Interact., 221 (2014) 70–76.
  2. M. Bahmani, M. Rafieian-Kopaei, M. Jeloudari, Z. Eftekhari, B. Delfan, A. Zargaran, S. Forouzan, A review of the health effects and uses of drugs of plant licorice (Glycyrrhiza glabra L.) in Iran, Asian Pac. J. Trop. Dis., 4(S2) (2014) S847–S849.
  3. R. Yang, L.-q. Wang, Y. Liu, Antitumor activities of widely-used Chinese herb—licorice, Chin. Herbal Med., 6 (2014) 274–281.
  4. E.A. Al-Dujaili, C. Kenyon, M. Nicol, J. Mason, Liquorice and glycyrrhetinic acid increase DHEA and deoxycorticosterone levels in vivo and invitro by inhibiting adrenal SULT2A1 activity, Mol. Cell. Endocrinol., 336 (2011) 102–109.
  5. S.-J. Ahn, Y.-D. Song, S.-J. Mah, E.-J. Cho, J.-K. Kook, Determination of optimal concentration of deglycyrrhizinated licorice root extract for preventing dental caries using a bacterial model system, J. Dent. Sci., 9 (2014) 214–220.
  6. M. Al-Obaidi, C. Kara-Zaitri, I.M. Mujtaba, Development of a mathematical model for apple juice compounds rejection in a spiral-wound reverse osmosis process, J. Food Eng., 192 (2017) 111–121.
  7. Z. Jin, H. Gong, K. Wang, Application of hybrid coagulation microfiltration with air backflushing to direct sewage concentration for organic matter recovery, J. Hazard. Mater., 283 (2015) 824–831.
  8. C. Zambra, J. Romero, L. Pino, A. Saavedra, J. Sanchez, Concentration of cranberry juice by osmotic distillation process, J. Food Eng., 144 (2015) 58–65.
  9. Y. Wang, B. Shi, Concentration of gelatin solution with polyethersulfone ultrafiltration membranes, Food Bioprod. Process., 89 (2011) 163–169.
  10. M.R. Sohrabi, S.S. Madaeni, M. Khosravi, A.M. Ghaedi, Concentration of licorice aqueous solutions using nanofiltration and reverse osmosis membranes, Sep. Purif. Technol., 75 (2010) 121–126.
  11. M. Al-Obaidi, C. Kara-Zaitri, I.M. Mujtaba, Optimum design of a multi-stage reverse osmosis process for the production of highly concentrated apple juice, J. Food Eng., 214 (2017) 47–59.
  12. G. Rajauria, B.K. Tiwari, Fruit Juices: Extraction, Composition, Quality and Analysis, Academic Press, 2017.
  13. S.S. Madaeni, A.R. Kurdian, Fuzzy modeling and hybrid genetic algorithm optimization of virus removal from water using microfiltration membrane, Chem. Eng. Res. Des., 89 (2011) 456–470.
  14. B.K. Nandi, A. Moparthi, R. Uppaluri, M.K. Purkait, Treatment of oily wastewater using low cost ceramic membrane: Comparative assessment of pore blocking and artificial neural network models, Chem. Eng. Res. Des., 88 (2010) 881–892.
  15. M.A. Al-Obaidi, C. Kara-Zaïtri, I.M. Mujtaba, Wastewater treatment by spiral wound reverse osmosis: Development and validation of a two dimensional process model, J. Clean. Prod., 140 (2017) 1429–1443.
  16. M.A. Al-Obaidi, C. Kara-Zaïtri, I.M. Mujtaba, Optimum design of a multi-stage reverse osmosis process for the production of highly concentrated apple juice, J. Food Eng., 214 (2017) 47–59.
  17. M.A. Al-Obaidi, I.M. Mujtaba, Steady state and dynamic modeling of spiral wound wastewater reverse osmosis process, Comput. Chem. Eng., 90 (2016) 278–299.
  18. S. Curcio, V. Calabrò, G. Iorio, A theoretical analysis of transport phenomena in membrane concentration of liquorice solutions: a FEM approach, J. Food Eng., 71 (2005) 252–264.
  19. Y. Vural, D.B. Ingham, M. Pourkashanian, Performance prediction of a proton exchange membrane fuel cell using the ANFIS model, Int. J. Hydrogen Energy, 34 (2009) 9181–9187.
  20. P. Rai, G. Majumdar, S. DasGupta, S. De, Modeling the performance of batch ultrafiltration of synthetic fruit juice and mosambi juice using artificial neural network, J. Food Eng., 71 (2005) 273–281.
  21. A. Castro, R. Carballo, G. Iglesias, J. Rabuñal, Performance of artificial neural networks in nearshore wave power prediction, Appl. Soft Comput., 23 (2014) 194–201.
  22. M. Pérez-Godoy, A.J. Rivera, C. Carmona, M. del Jesus, Training algorithms for radial basis function networks to tackle learning processes with imbalanced data-sets, Appl. Soft Comput., 25 (2014) 26–39.
  23. B. Kaushik, H. Banka, Performance evaluation of approximated artificial neural network (AANN) algorithm for reliability improvement, Appl. Soft Comput., 26 (2014) 303–314.
  24. A. Tardast, M. Rahimnejad, G. Najafpour, A. Ghoreyshi, G.C. Premier, G. Bakeri, S.-E. Oh, Use of artificial neural network for the prediction of bioelectricity production in a membrane less microbial fuel cell, Fuel, 117 (2014) 697–703.
  25. A. Maghsoodi, E. Afshari, H. Ahmadikia, Optimization of geometric parameters for design a high-performance ejector in the proton exchange membrane fuel cell system using artificial neural network and genetic algorithm, Appl. Therm. Eng., 71 (2014) 410–418.
  26. H. Nourbakhsh, Z. Emam-Djomeh, M. Omid, H. Mirsaeedghazi, S. Moini, Prediction of red plum juice permeate flux during membrane processing with ANN optimized using RSM, Comput. Electron. Agric., 102 (2014) 1–9.
  27. C. Aydiner, I. Demir, E. Yildiz, Modeling of flux decline in crossflow microfiltration using neural networks: the case of phosphate removal, J. Membr. Sci., 248 (2005) 53–62.
  28. V. Yangali-Quintanilla, A. Verliefde, T.U. Kim, A. Sadmani, M. Kennedy, G. Amy, Artificial neural network models based on QSAR for predicting rejection of neutral organic compounds by polyamide nanofiltration and reverse osmosis membranes, J. Membr. Sci., 342 (2009) 251–262.
  29. S. Chellam, Artificial neural network model for transient crossflow microfiltration of polydispersed suspensions, J. Membr. Sci., 258 (2005) 35–42.
  30. Y.G. Lee, Y.S. Lee, J.J. Jeon, S. Lee, D.R. Yang, I.S. Kim, J.H. Kim, Artificial neural network model for optimizing operation of a seawater reverse osmosis desalination plant, Desalination, 247 (2009) 180–189.
  31. G.R. Shetty, S. Chellam, Predicting membrane fouling during municipal drinking water nanofiltration using artificial neural networks, J. Membr. Sci., 217 (2003) 69–86.
  32. M. Sadrzadeh, T. Mohammadi, J. Ivakpour, N. Kasiri, Separation of lead ions from wastewater using electrodialysis: Comparing mathematical and neural network modeling, Chem. Eng. J., 144 (2008) 431–441.
  33. Q.-F. Liu, S.-H. Kim, S. Lee, Prediction of microfiltration membrane fouling using artificial neural network models, Sep. Purif. Technol., 70 (2009) 96–102.
  34. A. Ghaedi, A. Vafaei, M. Mohagheghian, N. Afshar, S. Hafezi, Fuzzy modelling of concentration in chamomile solution using reverse osmosis, Fresenius Environ. Bull., 21 (2012) 634–643.
  35. B. Rahmanian, M. Pakizeh, M. Esfandyari, F. Heshmatnezhad, A. Maskooki, Fuzzy modeling and simulation for lead removal using micellar-enhanced ultrafiltration (MEUF), J. Hazard. Mater., 192 (2011) 585–592.
  36. G. Özkan, M. İnal, Comparison of neural network application for fuzzy and ANFIS approaches for multi-criteria decision making problems, Appl. Soft Comput., 24 (2014) 232–238.
  37. A. Abdulshahed, A.P. Longstaff, S. Fletcher, A. Myers, Comparative study of ANN and ANFIS prediction models for thermal error compensation on CNC machine tools, in: Lamdamap 10th International Conference, EUSPEN, 2013.
  38. J. Sargolzaei, M. Haghighi Asl, A. Hedayati Moghaddam, Membrane permeate flux and rejection factor prediction using intelligent systems, Desalination, 284 (2012) 92–99.
  39. S. Azadi, A. Karimi-Jashni, S. Javadpour, Modeling and optimization of photocatalytic treatment of landfill leachate using tungsten-doped TiO2 nano-photocatalysts: Application of artificial neural network and genetic algorithm, Process Saf. Environ. Prot., 117 (2018) 267–277.
  40. Z.C. Lipton, J. Berkowitz, C. Elkan, A critical review of recurrent neural networks for sequence learning, arXiv preprint arXiv:1506.00019, (2015).
  41. S. Xu, L. Chen, A novel approach for determining the optimal number of hidden layer neurons for FNN’s and its application in data mining, in: 5th International Conference on Information Technology and Applications (ICITA 2008), Cairns, Queensland, Australia, 2008.
  42. G. Panchal, M. Panchal, Review on methods of selecting number of hidden nodes in artificial neural network, Int. J. Comput. Sci. Mobile Comput., 3 (2014) 455–464.
  43. H. Chen, A.S. Kim, Prediction of permeate flux decline in crossflow membrane filtration of colloidal suspension: a radial basis function neural network approach, Desalination, 192 (2006) 415–428.
  44. I. Yilmaz, O. Kaynar, Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils, Expert Syst. Appl., 38 (2011) 5958–5966.
  45. A. Shahsavand, F. Derakhshan Fard, F. Sotoudeh, Application of artificial neural networks for simulation of experimental CO2 absorption data in a packed column, J. Nat. Gas Sci. Eng., 3 (2011) 518–529.
  46. T.A. Awchi, Application of radial basis function neural networks for reference evapotranspiration prediction, Al-Rafi-dain Eng., 16 (2008) 117–129.
  47. J. Sargolzaei, M. Khoshnoodi, N. Saghatoleslami, M. Mousavi, Fuzzy inference system to modeling of crossflow milk ultrafiltration, Appl. Soft Comput., 8 (2008) 456–465.
  48. Mamdani, Application of fuzzy logic to approximate reasoning using linguistic synthesis, IEEE Trans. Comput., C-26 (1977) 1182–1191.
  49. T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Syst. Man Cybern., (1985) 116–132.
  50. M. Sahu, P. Singh, S.S. Mahapatra, K.K. Khatua, Prediction of entrance length for low Reynolds number flow in pipe using neuro-fuzzy inference system, Expert Syst. Appl., 39 (2012) 4545–4557.
  51. C. Carnevale, G. Finzi, E. Pisoni, M. Volta, Neuro-fuzzy and neural network systems for air quality control, Atmos. Environ., 43 (2009) 4811–4821.