References
- T.Y. Wong, S.-m. Lin, C.H. Poon, L.K. Leung, The licorice flavonoid
isoliquiritigenin reduces DNA-binding activity of AhR in
MCF-7 cells, Chem. Biol. Interact., 221 (2014) 70–76.
- M. Bahmani, M. Rafieian-Kopaei, M. Jeloudari, Z. Eftekhari,
B. Delfan, A. Zargaran, S. Forouzan, A review of the health
effects and uses of drugs of plant licorice (Glycyrrhiza glabra
L.) in Iran, Asian Pac. J. Trop. Dis., 4(S2) (2014) S847–S849.
- R. Yang, L.-q. Wang, Y. Liu, Antitumor activities of widely-used Chinese herb—licorice, Chin. Herbal Med., 6 (2014)
274–281.
- E.A. Al-Dujaili, C. Kenyon, M. Nicol, J. Mason, Liquorice and
glycyrrhetinic acid increase DHEA and deoxycorticosterone
levels in vivo and invitro by inhibiting adrenal SULT2A1
activity, Mol. Cell. Endocrinol., 336 (2011) 102–109.
- S.-J. Ahn, Y.-D. Song, S.-J. Mah, E.-J. Cho, J.-K. Kook, Determination
of optimal concentration of deglycyrrhizinated licorice
root extract for preventing dental caries using a bacterial
model system, J. Dent. Sci., 9 (2014) 214–220.
- M. Al-Obaidi, C. Kara-Zaitri, I.M. Mujtaba, Development of a
mathematical model for apple juice compounds rejection in a
spiral-wound reverse osmosis process, J. Food Eng., 192 (2017)
111–121.
- Z. Jin, H. Gong, K. Wang, Application of hybrid coagulation
microfiltration with air backflushing to direct sewage concentration
for organic matter recovery, J. Hazard. Mater., 283
(2015) 824–831.
- C. Zambra, J. Romero, L. Pino, A. Saavedra, J. Sanchez, Concentration
of cranberry juice by osmotic distillation process, J.
Food Eng., 144 (2015) 58–65.
- Y. Wang, B. Shi, Concentration of gelatin solution with polyethersulfone
ultrafiltration membranes, Food Bioprod. Process.,
89 (2011) 163–169.
- M.R. Sohrabi, S.S. Madaeni, M. Khosravi, A.M. Ghaedi, Concentration
of licorice aqueous solutions using nanofiltration
and reverse osmosis membranes, Sep. Purif. Technol., 75 (2010)
121–126.
- M. Al-Obaidi, C. Kara-Zaitri, I.M. Mujtaba, Optimum design
of a multi-stage reverse osmosis process for the production
of highly concentrated apple juice, J. Food Eng., 214 (2017)
47–59.
- G. Rajauria, B.K. Tiwari, Fruit Juices: Extraction, Composition,
Quality and Analysis, Academic Press, 2017.
- S.S. Madaeni, A.R. Kurdian, Fuzzy modeling and hybrid
genetic algorithm optimization of virus removal from water
using microfiltration membrane, Chem. Eng. Res. Des., 89
(2011) 456–470.
- B.K. Nandi, A. Moparthi, R. Uppaluri, M.K. Purkait, Treatment
of oily wastewater using low cost ceramic membrane: Comparative
assessment of pore blocking and artificial neural network
models, Chem. Eng. Res. Des., 88 (2010) 881–892.
- M.A. Al-Obaidi, C. Kara-Zaïtri, I.M. Mujtaba, Wastewater
treatment by spiral wound reverse osmosis: Development and
validation of a two dimensional process model, J. Clean. Prod.,
140 (2017) 1429–1443.
- M.A. Al-Obaidi, C. Kara-Zaïtri, I.M. Mujtaba, Optimum
design of a multi-stage reverse osmosis process for the production
of highly concentrated apple juice, J. Food Eng., 214
(2017) 47–59.
- M.A. Al-Obaidi, I.M. Mujtaba, Steady state and dynamic modeling
of spiral wound wastewater reverse osmosis process,
Comput. Chem. Eng., 90 (2016) 278–299.
- S. Curcio, V. Calabrò, G. Iorio, A theoretical analysis of transport
phenomena in membrane concentration of liquorice solutions:
a FEM approach, J. Food Eng., 71 (2005) 252–264.
- Y. Vural, D.B. Ingham, M. Pourkashanian, Performance prediction
of a proton exchange membrane fuel cell using the ANFIS
model, Int. J. Hydrogen Energy, 34 (2009) 9181–9187.
- P. Rai, G. Majumdar, S. DasGupta, S. De, Modeling the performance
of batch ultrafiltration of synthetic fruit juice and
mosambi juice using artificial neural network, J. Food Eng., 71
(2005) 273–281.
- A. Castro, R. Carballo, G. Iglesias, J. Rabuñal, Performance of
artificial neural networks in nearshore wave power prediction,
Appl. Soft Comput., 23 (2014) 194–201.
- M. Pérez-Godoy, A.J. Rivera, C. Carmona, M. del Jesus, Training
algorithms for radial basis function networks to tackle
learning processes with imbalanced data-sets, Appl. Soft
Comput., 25 (2014) 26–39.
- B. Kaushik, H. Banka, Performance evaluation of approximated
artificial neural network (AANN) algorithm for reliability
improvement, Appl. Soft Comput., 26 (2014) 303–314.
- A. Tardast, M. Rahimnejad, G. Najafpour, A. Ghoreyshi, G.C.
Premier, G. Bakeri, S.-E. Oh, Use of artificial neural network for
the prediction of bioelectricity production in a membrane less
microbial fuel cell, Fuel, 117 (2014) 697–703.
- A. Maghsoodi, E. Afshari, H. Ahmadikia, Optimization of
geometric parameters for design a high-performance ejector in
the proton exchange membrane fuel cell system using artificial
neural network and genetic algorithm, Appl. Therm. Eng., 71
(2014) 410–418.
- H. Nourbakhsh, Z. Emam-Djomeh, M. Omid, H. Mirsaeedghazi,
S. Moini, Prediction of red plum juice permeate
flux during membrane processing with ANN optimized using
RSM, Comput. Electron. Agric., 102 (2014) 1–9.
- C. Aydiner, I. Demir, E. Yildiz, Modeling of flux decline in
crossflow microfiltration using neural networks: the case of
phosphate removal, J. Membr. Sci., 248 (2005) 53–62.
- V. Yangali-Quintanilla, A. Verliefde, T.U. Kim, A. Sadmani, M.
Kennedy, G. Amy, Artificial neural network models based on
QSAR for predicting rejection of neutral organic compounds
by polyamide nanofiltration and reverse osmosis membranes,
J. Membr. Sci., 342 (2009) 251–262.
- S. Chellam, Artificial neural network model for transient crossflow
microfiltration of polydispersed suspensions, J. Membr.
Sci., 258 (2005) 35–42.
- Y.G. Lee, Y.S. Lee, J.J. Jeon, S. Lee, D.R. Yang, I.S. Kim, J.H. Kim,
Artificial neural network model for optimizing operation of a
seawater reverse osmosis desalination plant, Desalination, 247
(2009) 180–189.
- G.R. Shetty, S. Chellam, Predicting membrane fouling during
municipal drinking water nanofiltration using artificial neural
networks, J. Membr. Sci., 217 (2003) 69–86.
- M. Sadrzadeh, T. Mohammadi, J. Ivakpour, N. Kasiri, Separation
of lead ions from wastewater using electrodialysis: Comparing
mathematical and neural network modeling, Chem.
Eng. J., 144 (2008) 431–441.
- Q.-F. Liu, S.-H. Kim, S. Lee, Prediction of microfiltration membrane
fouling using artificial neural network models, Sep.
Purif. Technol., 70 (2009) 96–102.
- A. Ghaedi, A. Vafaei, M. Mohagheghian, N. Afshar, S. Hafezi,
Fuzzy modelling of concentration in chamomile solution using
reverse osmosis, Fresenius Environ. Bull., 21 (2012) 634–643.
- B. Rahmanian, M. Pakizeh, M. Esfandyari, F. Heshmatnezhad,
A. Maskooki, Fuzzy modeling and simulation for lead removal
using micellar-enhanced ultrafiltration (MEUF), J. Hazard.
Mater., 192 (2011) 585–592.
- G. Özkan, M. İnal, Comparison of neural network application
for fuzzy and ANFIS approaches for multi-criteria decision
making problems, Appl. Soft Comput., 24 (2014) 232–238.
- A. Abdulshahed, A.P. Longstaff, S. Fletcher, A. Myers, Comparative
study of ANN and ANFIS prediction models for
thermal error compensation on CNC machine tools, in: Lamdamap
10th International Conference, EUSPEN, 2013.
- J. Sargolzaei, M. Haghighi Asl, A. Hedayati Moghaddam,
Membrane permeate flux and rejection factor prediction using
intelligent systems, Desalination, 284 (2012) 92–99.
- S. Azadi, A. Karimi-Jashni, S. Javadpour, Modeling and optimization
of photocatalytic treatment of landfill leachate using
tungsten-doped TiO2 nano-photocatalysts: Application of artificial
neural network and genetic algorithm, Process Saf. Environ.
Prot., 117 (2018) 267–277.
- Z.C. Lipton, J. Berkowitz, C. Elkan, A critical review of recurrent
neural networks for sequence learning, arXiv preprint
arXiv:1506.00019, (2015).
- S. Xu, L. Chen, A novel approach for determining the optimal
number of hidden layer neurons for FNN’s and its application
in data mining, in: 5th International Conference on Information
Technology and Applications (ICITA 2008), Cairns,
Queensland, Australia, 2008.
- G. Panchal, M. Panchal, Review on methods of selecting number
of hidden nodes in artificial neural network, Int. J. Comput.
Sci. Mobile Comput., 3 (2014) 455–464.
- H. Chen, A.S. Kim, Prediction of permeate flux decline in
crossflow membrane filtration of colloidal suspension: a radial
basis function neural network approach, Desalination, 192
(2006) 415–428.
- I. Yilmaz, O. Kaynar, Multiple regression, ANN (RBF, MLP)
and ANFIS models for prediction of swell potential of clayey
soils, Expert Syst. Appl., 38 (2011) 5958–5966.
- A. Shahsavand, F. Derakhshan Fard, F. Sotoudeh, Application
of artificial neural networks for simulation of experimental
CO2 absorption data in a packed column, J. Nat. Gas Sci. Eng.,
3 (2011) 518–529.
- T.A. Awchi, Application of radial basis function neural networks
for reference evapotranspiration prediction, Al-Rafi-dain Eng., 16 (2008) 117–129.
- J. Sargolzaei, M. Khoshnoodi, N. Saghatoleslami, M. Mousavi,
Fuzzy inference system to modeling of crossflow milk ultrafiltration,
Appl. Soft Comput., 8 (2008) 456–465.
- Mamdani, Application of fuzzy logic to approximate reasoning
using linguistic synthesis, IEEE Trans. Comput., C-26
(1977) 1182–1191.
- T. Takagi, M. Sugeno, Fuzzy identification of systems and its
applications to modeling and control, IEEE Trans. Syst. Man
Cybern., (1985) 116–132.
- M. Sahu, P. Singh, S.S. Mahapatra, K.K. Khatua, Prediction of
entrance length for low Reynolds number flow in pipe using
neuro-fuzzy inference system, Expert Syst. Appl., 39 (2012)
4545–4557.
- C. Carnevale, G. Finzi, E. Pisoni, M. Volta, Neuro-fuzzy and
neural network systems for air quality control, Atmos. Environ.,
43 (2009) 4811–4821.