References

  1. J.C.T. van den Berg, Evaporated and Condensed Milk, in: Milk Hygiene, A Monograph from WHO, WHO Monograph Series No: 48, Geneva, Switzerland, 1962, pp. 321–345.
  2. D.Z. Liu, D.E. Dunstan, G.J.O. Martin, Evaporative concentration of skimmed milk: effect on casein micelle hydration, composition, and size, Food Chem., 134 (2012) 1446–1452.
  3. C. Ramirez, M. Patel, K. Blok, From fluid milk to milk powder: energy use and energy efficiency in the European dairy industry, Energy, 12 (2006) 1984–2004.
  4. V. Sant’Anna, L.D.F. Marczak, I.C. Tessaro, Membrane concentration of liquid foods by forward osmosis: process and quality view, J. Food Eng., 111 (2012) 483–489.
  5. B. Jiao, A. Cassano, E. Drioli, Recent advances on membrane processes for the concentration of fruit juices: a review, J. Food Eng., 63 (2004) 303–324.
  6. T.Y. Cath, D. Adams, A.E. Childress, Membrane contactor processes for wastewater reclamation in space II: combined direct osmosis, osmotic distillation, and membrane distillation for treatment of metabolic wastewater, J. Membr. Sci., 257 (2005) 111–119.
  7. C. Bhattacharjee, V.K. Saxena, S. Dutta, Fruit juice processing using membrane technology: a review, Innov. Food Sci. Emerg. Technol., 43 (2017) 136–153.
  8. K.B. Petretos, H.N. Lazarides, Osmotic concentration of liquid foods, J. Food Eng., 49 (2001) 201–206.
  9. V.D. Alves, I.M. Coelhoso, Orange juice concentration by osmotic evaporation and membrane distillation: a comparative study, J. Food Eng., 74 (2006) 125–133.
  10. S. Zhao, L. Zou, C.Y. Tang, D. Mulcahy, Recent developments in forward osmosis: opportunities and challenges, J. Membr. Sci., 396 (2012) 1–21.
  11. K. Savaş Bahçeci, H. Gül Akıllıoğlu, V. Gökmenb, Osmotic and membrane distillation for the concentration of tomato juice: effects on quality and safety characteristics, Innov. Food Sci. Emerg. Technol., 31 (2015) 131–138.
  12. L. Terkia, W. Kujawski, J. Kujawa, M. Kurzawa, A. Filipiak Szok, E. Chrzanowska, S. Khaleda, K. Madani, Implementation of osmotic membrane distillation with various hydrophobic porous membranes for concentration of sugars solutions and preservation of the quality of cactus pear juice, J. Food Eng., 230 (2018) 28–38.
  13. E. Yılmaz, P. Onsekizoğlu Bağcı, Production of phytotherapeutics from broccoli juice by integrated membrane processes, Food Chem., 242 (2018) 264–271.
  14. C. Zambra, J. Romero, L. Pino, A. Saavedra, J. Sanchez, Concentration of cranberry juice by osmotic distillation process, J. Food Eng., 144 (2015) 58–65.
  15. I.G. Wenten, Khoiruddin, Reverse osmosis applications: prospect and challenges, Desalination, 391 (2016) 112–125.
  16. K.S.Y. Ng, M. Haribabu, D.J.E. Harvie, D.E. Dunstan, G.J.O. Martin, Mechanisms of flux decline in skim milk ultrafiltration: a review, J. Membr. Sci., 523 (2017) 144–162.
  17. P. Meyer, A. Mayer, U. Kulozik, High concentration of skim milk proteins by ultrafiltration: characterisation of a dynamic membrane system with a rotating membrane in comparison with a spiral wound membrane, Int. Dairy J., 51 (2015) 75–83.
  18. P. D’Incecco, V. Rosi, G. Cabassi, J.A. Hogenboom, L. Pellegrino, Microfiltration and ultra-high-pressure homogenization for extending the shelf-storage stability of UHT milk, Food. Res. Int., 107 (2018) 477–485.
  19. C. Aydiner, S. Topcu, C. Tortop, F. Kuvvet, D. Ekinci, N. Dizge, B. Keskinler, A novel implementation of water recovery from whey: “forward-reverse osmosis” integrated membrane system, Desal. Wat. Treat., 51 (2013) 786–799.
  20. P. Pal, J. Nayak, Development and analysis of a sustainable technology in manufacturing acetic acid and whey protein from waste cheese whey, J. Cleaner Prod., 112 (2016) 59–70.
  21. Y.N. Wang, R. Wang, W. Li, C.Y. Tang, Whey recovery using forward osmosis – evaluating the factors limiting the flux performance, J. Membr. Sci., 533 (2017) 179–189.
  22. A. Hausmann, P. Sanciolo, T. Vasiljevic, E. Ponnampalam, N. Quispe-Chavez, M. Weeks, M. Duke, Direct contact membrane distillation of dairy process streams, Membranes, 1 (2011) 48–58.
  23. A. Hausmann, P. Sanciolo, T. Vasiljevic, U. Kulozik, M. Duke, Performance assessment of membrane distillation for skim milk and whey processing, J. Dairy Sci., 97 (2014) 56–71.
  24. A. Hausmann, P. Sanciolo, T. Vasiljevic, M. Weeks, K. Schroën, S. Gray, M. Duke, Fouling of dairy components on hydrophobic polytetrafluoroethylene (PTFE) membranes for membrane distillation, J. Membr. Sci., 442 (2013) 149–159.
  25. C. Dincer, I. Tontul, A. Topuz, A comparative study of black mulberry juice concentrates by thermal evaporation and osmotic distillation as influenced by storage, Innov. Food Sci. Emerg. Technol., 38 (2016) 57–64.
  26. W. Kujawski, A. Sobolewska, K. Jarzynka, C. Güell, M. Ferrando, J. Warczok, Application of osmotic membrane distillation process in red grape juice concentration, J. Food Eng., 116 (2013) 801–808.
  27. Q. Liu, C. Liu, L. Zhao, W. Ma, H. Liu, J. Ma, Integrated forward osmosis-membrane distillation process for human urine treatment, Water Res., 91 (2016) 45–54.
  28. Q. Ge, P. Wang, C. Wan, T.S. Chung, Polyelectrolyte-promoted forward osmosis−membrane distillation (FO−MD) hybrid process for dye wastewater treatment, Environ. Sci. Technol., 46 (2012) 6236−6243.
  29. Q. Ge, G. Han, T.S. Chung, Effective As(III) removal by a multicharged hydroacid complex draw solute facilitated forward osmosis-membrane distillation (FOMD) processes, Environ. Sci. Technol., 50 (2016) 2363−2370.
  30. T. Husnain, Y. Liu, R. Riffat, B. Mi, Integration of forward osmosis and membrane distillation for sustainable wastewater reuse, Sep. Purif. Technol., 156 (2015) 424–443.
  31. K.Y. Wang, M.M. Teoh, A. Nugroho, T.S. Chung, Integrated forward osmosis–membrane distillation (FO–MD) hybrid system for the concentration of protein solutions, Chem. Eng. Sci., 66 (2011) 2421–2430.
  32. M. Xie, L.D. Nghiem, W.E. Price, M. Elimelech, A forward osmosis−membrane distillation hybrid process for direct sewer mining: system performance and limitations, Environ. Sci. Technol., 47 (2013) 13486−13493.
  33. M. Xie, L.D. Nghiem, W.E. Price, M. Elimelech, Toward resource recovery from wastewater: extraction of phosphorus from digested sludge using a hybrid forward osmosis membrane distillation process, Environ. Sci. Technol. Lett., 1 (2014) 191–195.
  34. A. Hasanoğlu, K. Gül, Concentration of skim milk and dairy products by forward osmosis, J. Turk. Chem. Soc., Sect. B: Chem. Eng., 1 (2017) 149–160.
  35. A. Hasanoğlu, K. Gül, Concentration of milk by means of membrane contactors: a comparison of forward osmosis and membrane distillation, Aachener Membran Kolloquium Proceedings, Germany, 2–3 November 2016, pp. 261–265.
  36. B.R. Babu, N.K. Rastogi, K.S.M.S. Raghavarao, Mass transfer in osmotic membrane distillation of phycocynanin colorant and sweet-lime juice, J. Membr. Sci., 272 (2006) 58–69.
  37. V.D. Alves, I.M. Coelhoso, Effect of membrane characteristics on mass and heat transfer in the osmotic evaporation process, J. Membr. Sci., 228 (2004) 159–167.
  38. M. Mulder, Basic Principles of Membrane Technology, 2nd ed., Kluwer Academic Publishers, Netherlands, 1996, pp. 419.
  39. R. Prasad, K.K. Sirkar, Dispersion-free solvent extraction with microporous hollow fiber modules, AIChE J., 34 (1988) 177–188.
  40. P.J.A.M. Kerkhof, The role of theoretical and mathematical modelling in scale-up, Drying Technol., 12 (1994) 1–46.
  41. A.S. Bakshi, D.E. Smith, Effect of fat content and temperature on viscosity in relation to pumping requirements of fluid milk products, J. Dairy Sci., 67 (1984) 1157–1160.
  42. A. Gabelman, S.-T. Hwang, Hollow fiber membrane contactors, J. Membr. Sci., 159 (1999) 61–106.
  43. B.J.R. Jones, D.L.G. Rowlands, C.B. Monk, Diffusion coefficient of water in water and in some alkaline earth chloride solutions at 25°C, Trans. Faraday Soc., 61 (1965) 1384–1388.
  44. M. Holz, S.R. Heil, A. Sacco, Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements, Phys. Chem. Chem. Phys., 2 (2000) 4740–4742.
  45. DOW Chemicals, Calcium Chloride Handbook, Michigan, 2003.
  46. A.V. Bui, H.M. Nguyen, M. Joachim, Characterisation of the polarisations in osmotic distillation of glucose solutions in hollow fibre module, J. Food Eng., 68 (2005) 391–402.
  47. J. Stencl, Water activity of skimmed milk powder in the temperature range of 20–45°C, Acta Vet. Brno, 68 (1999) 209–215.
  48. A. Correa, J.F. Comesana, J.M. Correra, A.M. Sereno, Measurement and prediction of water activity in electrolyte solutions by a modified ASOG group contribution method, Fluid Ph. Equilibria, 129 (1997) 267–283.
  49. R. Thanedgunbaworn, R. Jiraratananon, M.H. Nguyen, Shell-side mass transfer of hollow fibre modules in osmotic distillation process, J. Membr. Sci., 290 (2007) 105–113.
  50. N. Nagaraj, G. Patil, B.R. Babu, U.H. Hebbar, K.S.M.S. Raghavarao, S. Nene, Mass transfer in osmotic membrane distillation, J. Membr. Sci., 268 (2006) 48–56.
  51. J. Kujawa, W. Kujawski, Driving force and activation energy in air-gap membrane distillation process, Chem. Pap., 69 (2015) 1438–1444.
  52. A. Viet Bui, H.M. Nguyen, M. Joachim, Prediction of water activity of glucose and calcium chloride solutions, J. Food Eng., 57 (2003) 243–248.
  53. M. Gyrta, The long-term studies of osmotic membrane distillation, Chem. Pap., 72 (2018) 99–107.