References

  1. L. Zhang, Y. Wang, S. Ni, G. Chen, K. Li, Y. Du, M. Song, The evolution of second-phase particles in 6111 aluminum alloy processed by hot and cold rolling, J. Mater. Eng. Perform., 27 (2018) 1130–1137.
  2. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Recent development in aluminium alloys for the automotive industry, Mater. Sci. Eng. A, 280 (2000) 37–49.
  3. A.R. Riahi, O.A. Gali, K.R. Januszkiewicz, D. Pattemore, Experimental study of the disturbed layer generation during hot rolling contact of aluminum with steel, Tribol. Int., 54 (2012) 42–50.
  4. Y. Okamoto, Oil Compositions for Hot Rolling Aluminum and Aluminum Alloys, U.S. Patent 5,583,100[P].1996-12-10.
  5. F.E. Lockwood, K. Bridger, M.E. Tadros, Interactions between rolling oil emulsions and aluminum alloy surfaces, ASLE Trans., 27 (1984) 203–206.
  6. M.S. Chun, J.G. Lenard, Hot rolling of an aluminum alloy using oil/water emulsions, J. Mater. Process. Technol., 72 (1997) 283–292.
  7. A. Shirizly, J.G. Lenard, J. Sauer, K. Januszkiewicz, Lubricant capture during hot rolling of an aluminum alloy, Tribol. Trans., 45 (2002) 205–210.
  8. A. Johnsson1, M. Ekman, A. Janols, Developing environmentally friendly rolling lubricants, J. Eng. Tribol., 225 (2011) 932–939.
  9. D. Han, Aluminum alloy slab band hot rolling emulsion electrolysis breaking device has waste liquid tank that includes vent at bottom of stirring unit and steam heating unit, and waste electrolytic device that includes anode and cathode plates: CN. Patent 202,682,851-U [P].2013-1-23.
  10. Y. Liu, C.C. Lv, J. Ding, P. Qian, X.M. Zhang, Y. Yu, S.F. Ye, Y.F. Chen, The use of the organic–inorganic hybrid polymer Al(OH)3–polyacrylamide to flocculate particles in the cyanide tailing suspensions, Miner. Eng., 89 (2016) 108–117.
  11. J.Y. Yang, L. Yan, S.P. Li, X.R. Xu, Treatment of aging oily wastewater by demulsification/flocculation, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 51 (2016) 1–7.
  12. D.F. Zeng, D. Hu, J. Cheng, Preparation and study of a composite flocculant for papermaking wastewater treatment, J. Environ. Prot., 2 (2011) 1370–1374.
  13. Z.C. Zhang, The flocculation mechanism and treatment of oily wastewater by flocculation, Water Sci. Technol., 76 (2017) 2630–2637.
  14. K.E. Lee, T.T. Teng, N. Morad, B.T. Poh, Y.F. Hong, Flocculation of kaolin in water using novel calcium chloride-polyacrylamide (CaCl2-PAM) hybrid polymer, Sep. Purif. Technol., 75 (2010) 346–351.
  15. Y.B. Zeng, C.Z. Yang, J.D. Zhang, W.H. Pu, Feasibility investigation of oily wastewater treatment by combination of zinc and PAM in coagulation/flocculation, J. Hazard. Mater., 147 (2007) 991–996.
  16. Y. Yang, Y. Li, Y.M. Zhang, D.W. Liang, Applying hybrid coagulants and polyacrylamide flocculants in the treatment of high-phosphorus hematite flotation wastewater (HHFW): optimization through response surface methodology, Sep. Purif. Technol., 76 (2010) 72–78.
  17. P.A. Moussas, A.I. Zouboulis, A new inorganic–organic composite coagulant, consisting of polyferric sulphate (PFS) and polyacrylamide (PAA), Water Res., 43 (2009) 3511–3524.
  18. H.S. Kim, D.J. Joo, J. Lee, Flocculating properties of polycondensate of 1-butyl amine and epichlorohydrin, Environ. Technol., 20 (1998) 117–120.
  19. Q. Li, Q.Y. Yue, H.J. Sun, Y. Su, B.Y. Gao, A comparative study on the properties, mechanisms and process designs for the adsorption of non-ionic or anionic dyes onto cationic-polymer/bentonite, J. Environ. Manage., 91 (2010) 1601–1611.
  20. Q. Li, Q.Y. Yue, Y. Su, B.Y. Gao, Equilibrium and a two-stage batch adsorber design for reactive or disperse dye removal to minimize adsorbent amount, Bioresour. Technol., 102 (2011) 5290–5296.
  21. G.J. Churchman, Formation of complexes between bentonite and different cationic polyelectrolytes and their use as sorbents for non-ionic and anionic pollutants, Appl. Clay Sci., 21 (2002) 177–189.
  22. Y.P. Jin, Y.H. Wu, J.l. Cao, Y.Y. Wu, Optimizing decolorization of Methylene Blue and Methyl Orange dye by pulsed discharged plasma in water using response surface methodology, J. Taiwan Inst. Chem. Eng., 45 (2014) 589–595.
  23. B.Y. Tak, B.S. Tak, Y.J. Kim, Y.J. Park, Y.H. Yoon, G.H. Min, Optimization of color and COD removal from livestock wastewater by electrocoagulation process: application of Box–Behnken design (BBD), J. Ind. Eng. Chem., 28 (2015) 307–315.
  24. Y.F. Wang, K.F. Chen, L.H. Mo, J. Li, J. Xu, Optimization of coagulation–flocculation process for papermakingreconstituted tobacco slice wastewater treatment using response surface methodology, J. Ind. Eng. Chem., 20 (2014) 391–396.
  25. S.S. Kumar, N.R. Bishnoil, Coagulation of landfill leachate by FeCl3: process optimization using Box–Behnken design (RSM), Appl. Water Sci., 7 (2017) 1943–1953.
  26. C. Desjardins, B. Koudjonou, R. Desjardins, Laboratory study of ballasted flocculation, Water Res., 36 (2002) 744–754.
  27. A. Gürses, M. Yalçin, C. Dogar, Removal of Remazol Red Rb by using Al (III) as coagulant-flocculant: effect of some variables on settling velocity, Water Air Soil Pollut., 146 (2003) 297–318.
  28. S.M.R. Shaikh, M.S. Nasser, I.A. Hussein, A. Benamor, Investigation of the effect of polyelectrolyte structure and type on the electrokinetics and flocculation behavior of bentonite dispersions, Chem. Eng. J., 311 (2017) 265–276.
  29. Z.Z. Liu, H. Wei, A.M. Li, H. Yang, Evaluation of structural effects on the flocculation performance of a co-graft starchbased flocculant, Water Res., 118 (2017) 160–166.
  30. Q.B. He, C. Deng, Y. Xu, D.N. Shen, B. Dong, X.H. Dai, Optimization of and mechanism for the coagulation–flocculation of oil-field wastewater from polymer flooding, Desal. Wat. Treat., 57 (2016) 1–10.
  31. C.Z. Hu, H.J. Liu, J.H. Qu, D.S. Wang, J. Ru, Coagulation behavior of aluminum salts in eutrophic water: significance of Al13 species and pH control, Environ. Sci. Technol., 40 (2006) 325–331.
  32. S.M. Miller, E.J. Fugate, V.O. Craver, J.A. Smith, J.B. Zimmerman, Toward understanding the efficacy and mechanism of Opuntia spp. as a natural coagulant for potential application in water treatment, Environ. Sci. Technol., 42 (2008) 4274–4279.
  33. K.J. Howe, A. Marwah, K.P. Chiu, S.S. Adham, Effect of coagulation on the size of MF and UF membrane foulants, Environ. Sci. Technol., 40 (2006) 7908–7913.
  34. S. Mukherjee, A. Pariatamby, J.N. Sahu, B.S. Gupta, Clarification of rubber mill wastewater by a plant based biopolymercomparison with common inorganic coagulants, J. Chem. Technol. Biotechnol., 88 (2013) 1864–1873.
  35. J.P. Wang, Y.Z. Chen, Y. Wang, S.J. Yuan, H.Q. Yu, Optimization of the coagulation-flocculation process for pulp mill wastewater treatment using a combination of uniform design and response surface methodology, Water Res., 45 (2011) 5633–5640.
  36. N. Birjandi, H. Younesi, N. Bahramifar, S. Ghafari, A.A. Zinatizadeh, S. Sethupathi, Optimization of coagulationflocculation treatment on paper-recycling wastewater: application of response surface methodology, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 48 (2013) 1573–1582.
  37. R. Lessoued, F. Souahi, L.C. Pelaez, Modelization and statistical optimization of coagulation–flocculation treatment of an old leachate, Water Environ. Res., 89 (2017) 2136–2141.
  38. N.M. Daud, S.R.S. Abdullah, H.A. Hasan, Response surface methodological analysis for the optimization of acid-catalyzed transesterification biodiesel wastewater pre-treatment using coagulation–flocculation process, Process Saf. Environ. Prot., 113 (2018) 184–192.
  39. W. Setyaningsih, I.E. Saputro, C.A. Carrera, M. Palma, C.G. Barroso, Multiresponse optimization of a UPLC method for the simultaneous determination of tryptophan and 15 tryptophanderived compounds using a Box-Behnken design with a desirability function, Food Chem., 225 (2017) 1–9
  40. Y.J. Shen, Y. Wang, J. Shi, D.P. Tan, X.H. Jing, Q.H. Xu, Modeling and optimization of the electric flocculation of wastewater containing Cr6+ using response surface methodology, Sep. Sci. Technol., 52 (2017) 2684–2695.
  41. X.R. Xu, G.L. Liu, Y.M. Yang, J.S. Gao, Study on demulsification of the oil-in-water emulsion from column top of a delayed coking unit in refinery. II. synthesis and application, Petrol. Sci. Technol., 22 (2004) 247–261.
  42. R. Zolfaghari, A. Fakhru’L-Razi, L.C. Abdullah, S.S.E.H. Elnashaie, A. Pendashteh, Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry, Sep. Purif. Technol., 170 (2016) 377–407.
  43. J. Liu, H.J. Wang, X.C. Li, W.H. Jia, Y.P. Zhao, S.L. Ren, Recyclable magnetic graphene oxide for rapid and efficient demulsification of crude oil-in-water emulsion, Fuel, 189 (2017) 79–87.
  44. R. Martínez-Palou, J. Reyes, R. Cerón-Camacho, M. Ramírezde-Santiago, D. Villanueva, A.A. Vallejo, J. Aburto, Study of the formation and breaking of extra-heavy-crude-oil-in-water emulsions—a proposed strategy for transporting extra heavy crude oils, Chem. Eng. Process., 98 (2015) 112–122.
  45. W.L. Kang, L.M. Guo, H.M. Fan, L.W. Meng, Y.H. Li, Flocculation, coalescence and migration of dispersed phase droplets and oil–water separation in heavy oil emulsion, J. Petrol. Sci. Eng., 81 (2012) 177–181.
  46. A.A. Umar, I.B.M. Saaid, A.A. Sulaimon, R.B.M. Pilus, A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids, J. Petrol. Sci. Eng., 165 (2018) 673–690.
  47. K.A. Lin, Y.C. Chen, S. Phattarapattamawong, Efficient demulsification of oil-in-water emulsions using a zeolitic imidazolate framework: adsorptive removal of oil droplets from water, J. Colloid Interface Sci., 478 (2016) 97–106.
  48. M. Moradi, F. Ghanbari, Application of response surface method for coagulation process in leachate treatment as pretreatment for Fenton process: biodegradability improvement, J. Water Process Eng., 4 (2014) 67–73.
  49. S. Chattoraj, N.K. Mondal, B. Das, P. Roy, B. Sadhukhan, Biosorption of carbaryl from aqueous solution onto Pistia stratiotes biomass, Appl. Water Sci., 4 (2014) 79–88.
  50. R. Sen, T. Swaminathan, Response surface modeling and optimization to elucidate and analyze the effects of inoculum age and size on surfactin production, Biochem. Eng. J., 21 (2004) 141–148.
  51. M.A. Rasool, T. Babak, C. Naz, A.R. Pendashteh, A.S. Mirroshandel, Use of a plant-based coagulant in coagulation–ozonation combined treatment of leachate from a waste dumping site, Ecol. Eng., 90 (2016) 431–437.
  52. A. Lee, N. Chaibakhsh, M.B.A. Rahman, M. Basri, B.A. Tejo, Optimized enzymatic synthesis of levulinate ester in solventfree system, Ind. Crops Prod., 32 (2010) 246–251.
  53. Q. Chang, J.Y. Fu, Z.L. Li, Principles of Flocculation, Lanzhou University Press, Lanzhou, 1993.
  54. H.Z. Zhang, S.M. Fang, C.M. Ye, M.H. Wang, H.J. Cheng, H. Wen, X.L. Meng, Treatment of waste filature oil/water emulsion by combined demulsification and reverse osmosis, Sep. Purif. Technol., 63 (2008) 264–268.
  55. X.F. Zhao, L.X. Liu, Y.C. Wang, H.X. Dai, D. Wang, H. Cai, Influences of partially hydrolyzed polyacrylamide (HPAM) residue on the flocculation behavior of oily wastewater produced from polymer flooding, Sep. Purif. Technol., 62 (2008) 199–204.