References

  1. D. Qigen, L. Mingju, C. Xuefeng, A study of hydrogen sulfide genesis in coal mine of southeastern margin of Junggar basin, Earth Sci. Front., 24 (2017) 395–401.
  2. H.G. Machel, Bacterial and thermochemical sulfate reduction in diagenetic settings—old and new insights, Sediment. Geol., 140 (2001) 143–175.
  3. J.W. Smith, R. Philips, Isotopic study of coal associated hydrogen sulphide. In geochemistry of sulfur in fossil fuels, Am. Chem. Soc. Symp., 429 (1990) 568–574.
  4. C.F. Cai, R.H. Worden, S.H. Bottrell, Thermochemical sulphate reduction and the generation of hydrogen sulphide and thiols (mercaptans) in Triassic carbonate reservoirs from the Sichuan Basin, China, Chem. Geol., 20 (2003) 39–57.
  5. M.M. Cross, D.A.C. Manning, S. Bottrell, Thermochemical sulfate reduction (TSR): experimental determination of reaction kinetics and implications of the observed reaction rates for petroleum reservoirs, Organ. Geochem., 35 (2004) 393–404.
  6. Z. Shuichang, Z. Guangyou, H. Kun, The effects of thermochemical sulfate reduction on occurrence of oil-cracking gas and reformation of deep carbonate reservoir and the interaction mechanisms, Acta Petrol. Sinica, 27 (2011) 809–826.
  7. T.S. Chen, Q. He, H. Lu, Thermal simulation experiments of saturated hydrocarbons with calcium sulfate and element sulphur: implications on origin of H2S, Sci. China Ser. D Earth Sci., 52 (2009) 1550–1558.
  8. G.Y. Zhu, A.G. Fei, J. Zhao, Sulfur isotopic fractionation and mechanism for thermochemical aulfate reduction genetic H2S, Acta Petrol. Sinica, 30 (2017) 3772–3786.
  9. F. Hao, T.L. Guo, Y.M. Zhu, Evidence for multiple stages of oil cracking and thermochemical sulfate reduction in the Puguang gas field, Sichuan Basin, China, AAPG Bull., 92 (2008) 611–637.
  10. G.Y. Zhu, S.C. Zhang, Y.B. Liang, The origin and distribution of hydrogen sulfide in the petroliferous basins, China, Acta Geol. Sin., 83 (2009) 1188–1201.
  11. J.H. Zhang, Q.G. Deng, Simulation experiments of generation of H2S in coal with water, Coal, 24 (2015) 14–17.
  12. D. Qigen, M.J. Liu, F.J. Zhao, Q. Wang, Geochemistry characteristics of sulfur in coals, Disaster Adv., 6 (2013) 234–240.
  13. O.S.L. Bruinsma, P.J.J. Tromp, H.J.J.D.S. Nolting, Gas phase pyrolysis of coal-related aromatic compounds in a coiled tube flow reactor: 2. Heterocyclic compounds, their benzo and dibenzo derivatives, Fuel, 67 (1988) 327–333.
  14. Y.H. Shuai, S.C. Zhang, P. Luo, Experimental evidence for formation water promoting crude oil cracking to gas, Chin. Sci. Bull., 57 (2012) 4587–4593.
  15. D. Qigen, The study of genesis modes and enrichment control factors of hydrogen sulfide in Jurassic coal seam within the midst of southern margin of Junggar basin, Henan Polytechnic University, 2015.
  16. R.H. Hurt, A.F. Sarofim, J.P. Longwell, Role of microporous surface area in uncatalyzed carbon gasification, Energy Fuels, 5 (1991) 290–299.
  17. T.W. Zhang, A. Amrani, G.S. Ellis, Experimental investigation on thermochemical sulfate reduction by H2S initiation, Geochim. Cosmochim. Acta, 72 (2008) 3518–3530.
  18. C.T. Yue, S.Y. Li, K.L. Ding, N.N. Zhong, Thermodynamics and kinetics of reactions between C1-C3 hydrocarbons calcium sulfate in deep carbonate reservoirs, Geochem. J., 40 (2012) 87–94.
  19. G. Azimi, V.G. Papangelakis, Thermodynamic modeling and experimental measurement of calcium sulfate in complex aqueous solutions, Fluid Phase Equilib., 290 (2010) 88–94.
  20. G. Azimi, V.G. Papangelakis, J.E. Dutrizac, Development of an MSE-based chemical model for the solubility of calcium sulphate in mixed chloride-sulphate solutions, Fluid Phase Equilb., 266 (2008) 172–186.
  21. J.E. Dutrizac, A. Kuiper, The solubility of calcium sulphate in simulated nickel sulphate-chloride processing solutions, Hydrometallurgy, 82 (2006) 13–31.
  22. G.Y. Zhu, S.C. Zhang, Y.B. Liang, The genesis of H2S in the Weiyuan Gas Field, Sichuan Basin and its evidence, Chin. Sci. Bull., 51 (2006) 2780–2788.
  23. Y.T. Lin, Sulfur isotope study of marine sedimentary gypsum and brine in the Triassic of the Sichuan Basin, J. Salt Lake Res., 11 (2003) 1–7.
  24. Y.G. Wang, L.R. Dou, Y.C. Wen, Study on the genesis of H2S in the high-sulfur gas reservoir of the Feixianguan Formation of the Triassic in the northeastern Sichuan Basin, Geochemistry, 31 (2002) 517–524.
  25. H.G. Machel, J. Lonnee, Hydrothermal dolomite - a product of poor definition and imagination, Sediment. Geol., 152 (2002) 163–171.
  26. A. Meshoulam, G.S. Ellis, W. Ahmad, Study of thermochemical sulfate reduction mechanism using compound specific sulfur isotope analysis, Geochim. Cosmochim. Acta, 188 (2016) 73–92.
  27. X. Xia, G.D. Ellis, Q. Ma, Compositional and stable carbon isotopic fractionation during non-autocatalytic thermochemical sulfate reduction by gaseous hydrocarbons, Geochim. Cosmochim. Acta, 139 (2014) 472–486.
  28. L. Mingju, D. Qigen, Z. Fajun, Origin of hydrogen sulfide in coal seams in China, Saf. Sci., 50 (2012) 668–673.
  29. A. Bind, L. Goswami, V. Prakash, Comparative analysis of floating and submerged macrophytes for heavy metal (copper, chromium, arsenic and lead) removal: sorbent preparation, characterization, regeneration and cost estimation, Geol. Ecol. Landscape, 2 (2018) 61–72.
  30. I. Karaoui, A. Arioua, A.E.A. Idrissi, M. Hssaisoune, W. Nouaim, K.A. Ouhamchich, D. Elhamdouni, Assessing land use/cover variation effects on flood intensity via hydraulic simulations: a case study of Oued El Abid watershed (Morocco), Geol. Ecol. Landscape, 2 (2018) 73–80.
  31. M. Bahmani, A. Noorzad, J. Hamedi, F. Sali, The role of bacillus pasteurii on the change of parameters of sands according to temperature compression and wind erosion resistance, J. CleanWAS, 1 (2017) 1–5.
  32. W.L. Wun, G.K. Chua, S.Y. Chin, Effect of palm oil mill effluent (POME) treatment by activated sludge, J. CleanWAS, 1 (2017) 6–9.
  33. N.S. Zafisah, W.L. Ang, A.W. Mohammad, Cake filtration for suspended solids removal in digestate from anaerobic digested palm oil mill effluent (POME), Water Conserv. Manage., 2 (2018) 05–09.
  34. I. Syafiqah, H.W. Yussof, The use of factorial design for analysis of mercury removal efficiency using palm oil fuel ash, Water Conserv. Manage., 2 (2018) 10–12.