References

  1. I.E. Affandi, N.H. Suratman, S. Abdullah, W.A. Ahmad, Z.A. Zakaria, Degradation of oil and grease from high-strength industrial effluents using locally isolated aerobic biosurfactantproducing bacteria, Int. Biodeterior. Biodegrad., 95 (2014) 33–40.
  2. P. Christen, A. Vega, L. Casalot, G. Simon, R. Auria, Kinetics of aerobic phenol biodegradation by the acidophilic and hyperthermophilic archaeon Sulfolobus solfataricus 98/2, Biochem. Eng. J., 62 (2012) 56–61.
  3. F.M. Ghazali, W.L.W. Johari, The occurrence and analysis of bisphenol A (BPA) in environmental samples – a review, J. Biochem. Microbiol. Biotechnol., 3 (2015) 30–38.
  4. S.A. Hasan, S. Jabeen, Degradation kinetics and pathway of phenol by Pseudomonas and Bacillus species, Biotechnol. Biotechnol. Equip., 29 (2015) 45–53.
  5. S.K. Maiti, S.M. Mannan, Treatment of synthetic phenolic was through anaerobic filter technology, Indian J. Environ. Prot., 19 (1999) 422–426.
  6. Department of Environment (DOE) Malaysia Environmental Quality Report, Department of Environment Ministry of Natural Resources and Environment Malaysia, 2014, ISSN 0127-6433.
  7. S.A. Ahmad, M.A. Syed, N.M. Arif, M.Y.A. Shukor, N.A. Shamaan, Isolation, identification and characterization of elevated phenol degrading Acinetobacter sp. strain AQ5NOL 1, Aust. J. Basic Appl. Sci., 5 (2011) 1035–1045.
  8. M. Norazah, S.A. Ahmad, M.Y. Shukor, N.M. Arif, A. Khalilah, I.A. Latif, Statistical optimisation for improvement of phenol degradation by Rhodococcus sp. NAM 81, J. Environ. Biol., 37 (2016) 355–360.
  9. A. Zulkharnain, R. Maeda, T. Omori, Expression, purification and characterization of meta-cleavage enzyme carbabb from Novosphiongobium sp. KA1, J. Biochem. Microbiol. Biotechnol., 1 (2013) 11–16.
  10. M.I.E. Halmi, M.S. Shukor, W.L.W. Johari, M.Y. Shukor, Mathematical modeling of the growth kinetics of Bacillus sp. on tannery effluent containing chromate, J. Environ. Biorem. Toxicol., 2 (2014) 6–10.
  11. P. Saravanan, K. Pakshirajan, P. Saha, Batch growth kinetics of an indigenous mixed microbial culture utilizing m-cresol as the sole carbon source, J. Hazard. Mater., 162 (2009) 476–481.
  12. A. Taweel, M. Shuhaimi-Othman, A.K. Ahmad, Assessment of heavy metals in tilapia fish (Oreochromis niloticus) from the Langat River and Engineering Lake in Bangi, Malaysia, and evaluation of the health risk from tilapia consumption, Ecotoxicol. Environ. Saf., 93 (2013) 45–51.
  13. S.K. Rachhpal, Pseudomonas: Molecular and Applied Biology, Springer International Publishing, Switzerland, 2016.
  14. N. Singh, C. Balomajumder, Biodegradation of phenol and cyanide by Pseudomonas putida MTCC 1194: an experimental and modeling study, Desal. Wat. Treat., 57 (2016) 28426–28435.
  15. M.S. Shukor, M.Y. Shukor, Statistical diagnostic tests of residuals from the Gompertz model used in the fitting of the growth of E. coli measured using a real-time impedimetric biosensor, Nanobio Bionano, 2 (2015) 58–62.
  16. A. Banerjee, A.K. Ghoshal, Isolation and characterization of hyper phenol tolerant Bacillus sp. from oil refinery and exploration sites, J. Hazard. Mater., 176 (2010) 85–91.
  17. A.-E. Hamitouche, Z. Bendjama, A. Amrane, F. Kaouah, D. Hamane, Relevance of the Luong model to describe the biodegradation of phenol by mixed culture in a batch reactor, Ann. Microbiol., 62 (2012) 581–586.
  18. P. Saravanan, K. Pakshirajan, P. Saha, Growth kinetics of an indigenous mixed microbial consortium during phenol degradation in a batch reactor, Bioresour. Technol., 99 (2008) 205–209.
  19. G. Wei, J. Yu, Y. Zhu, W. Chen, L. Wang, Characterization of phenol degradation by Rhizobium sp. CCNWTB 701 isolated from Astragalus chrysopteru in mining tailing region, J. Hazard. Mater., 151 (2008) 111–117.
  20. S.A. Ahmad, N.A. Shamaan, N.M. Arif, G.B. Koon, M.Y.A. Shukor, M.A. Syed, Enhanced phenol degradation by immobilized Acinetobacter sp. strain AQ5NOL 1, World J. Microbiol. Biotechnol., 28 (2012) 347–352.
  21. K.I. Karamba, M.Y. Shukor, M.A. Syed, A. Zulkharnain, N. Adeela, Isolation, screening and characterisation of cyanidedegrading Serratia marcescens strain AQ07, J. Chem. Pharm. Sci., 8 (2015) 401–406.
  22. K. Tamura, G. Stecher, D. Peterson, A. Filipski, S. Kumar, MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0, Mol. Biol. Evol., 30 (2013) 2725–2729.
  23. B. Basak, B. Bhunia, S. Dutta, S. Chakraborty, A. Dey, Kinetics of phenol biodegradation at high concentration by a metabolically versatile isolated yeast Candida tropicalis PHB5, Environ. Sci. Pollut. Res., 21 (2014) 1444–1454.
  24. H. Akaike, Factor analysis and AIC, Psychometrika, 52 (1987) 317–332.
  25. H.J. Motulsky, L.A. Ransnas, Fitting curves to data using nonlinear regression: a practical and nonmathematical review, FASEB J., 1 (1987) 365–374.
  26. T. Ross, T.A. McMeekin, Predictive microbiology, Int. J. Food Microbiol., 23 (1994) 241–264.
  27. M.I.E. Halmi, M.S. Shukor, N.A. Masdor, N.A. Shamaan, M.Y. Shukor, Testing the normality of residuals on regression model for the growth of Paracoccus sp. SKG on acetonitrile, J. Environ. Biorem. Toxicol., 3 (2015) 15–17.
  28. J. Felsenstein, Confidence limits on phylogenies: an approach using the bootstrap, Evolution, 39 (1985) 783–791.
  29. Á.A.M.G. Monteiro, R.A.R. Boaventura, A.E. Rodrigues, Phenol biodegradation by Pseudomonas putida DSM 548 in a batch reactor, Biochem. Eng. J., 6 (2000) 45–49.
  30. N.M. Arif, S.A. Ahmad, M.A. Syed, M.Y. Shukor, Isolation and characterization of a phenol-degrading Rhodococcus sp. strain AQ5NOL 2 KCTC 11961BP, J. Basic Microbiol., 53 (2013) 9–19.
  31. Ş. Şeker, H. Beyenal, B. Salih, A. Tanyolaç, Multi-substrate growth kinetics of Pseudomonas putida for phenol removal, Appl. Microbiol. Biotechnol., 47 (1997) 610–614.
  32. P. Saravanan, K. Pakshirajan, P. Saha, Kinetics of phenol degradation and growth of predominant Pseudomonas species in a simple batch stirred tank reactor, Bulg. Chem. Commun., 43 (2011) 502–509.
  33. S.E. Agarry, T.O.K. Audu, B.O. Solomon, Substrate inhibition kinetics of phenol degradation by Pseudomonas fluorescence from steady state and wash-out data, Int. J. Environ. Sci. Technol., 6 (2009) 443–450.
  34. B. Chakraborty, L. Ray, S. Basu, Study of phenol biodegradation by an indigenous mixed consortium of bacteria, Indian J. Chem. Technol., 22 (2015) 227–233.
  35. N.M. Heilbuth, V.R. Linardi, A.S. Monteiro, R.A. da Rocha, L.A. Mimim, V.L. Santos, Estimation of kinetic parameters of phenol degradation by bacteria isolated from activated sludge using a genetic algorithm, J. Chem. Technol. Biotechnol., 90 (2015) 2066–2075.
  36. S. Dey, S. Mukherjee, Performance and kinetic evaluation of phenol biodegradation by mixed microbial culture in a batch reactor, Int. J. Water Resour. Environ. Eng., 2 (2010) 40–49.