References

  1. Y. Qu, X. Zhang, J. Xu, W. Zhang, Y. Guo, Removal of hexavalent chromium from wastewater using magnetotactic bacteria, Sep. Sci. Technol., 136 (2014) 10–17.
  2. A. Demir, M. Arisoy, Biological and chemical removal of Cr(VI) from waste water: cost and benefit analysis, J. Hazard. Mater., 147 (2007) 275–280.
  3. M. Karnib, A. Kabbani, H. Holail, Z. Olama, Heavy metals removal using activated carbon, silica and silica activated carbon composite, Energy Procedia, 50 (2014) 113–120.
  4. N. Kongsricharoern, C. Polprasert, Chromium removal by a bipolar electro-chemical precipitation process, Water Sci. Technol., 34 (1996) 109–116.
  5. S. Rengaraj, K.-H. Yeon, S.-H. Moon, Removal of chromium from water and wastewater by ion exchange resins, J. Hazard. Mater., 87 (2001) 273–287.
  6. S. Kalidhasan, N. Rajesh, Simple and selective extraction process for chromium (VI) in industrial wastewater, J. Hazard. Mater., 170 (2009) 1079–1085.
  7. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  8. A. Bingol, A. Aslan, A. Cakici, Biosorption of chromate anions from aqueous solution by a cationic surfactant-modified lichen (Cladonia rangiformis (L.)), J. Hazard. Mater., 161 (2009) 747–752.
  9. M. Bhattacharya, S.K. Dutta, J. Sikder, M.K. Mandal, Computational and experimental study of chromium (VI) removal in direct contact membrane distillation, J. Membr. Sci., 450 (2014) 447–456.
  10. A. Hafiane, D. Lemordant, M. Dhahbi, Removal of hexavalent chromium by nanofiltration, Desalination, 130 (2000) 305–312.
  11. H.-g. Choi, M. Son, H. Choi, Integrating seawater desalination and wastewater reclamation forward osmosis process using thin-film composite mixed matrix membrane with functionalized carbon nanotube blended polyethersulfone support layer, Chemosphere, 185 (2017) 1181–1188.
  12. Y. Cui, Q. Ge, X.-Y. Liu, T.-S. Chung, Novel forward osmosis process to effectively remove heavy metal ions, J. Membr. Sci., 467 (2014) 188–194.
  13. B. Vital, J. Bartacek, J.C. Ortega-Bravo, D. Jeison, Treatment of acid mine drainage by forward osmosis: heavy metal rejection and reverse flux of draw solution constituents, Chem. Eng. J., 332 (2018) 85–91.
  14. P. Zhao, B. Gao, Q. Yue, S. Liu, H.K. Shon, The performance of forward osmosis in treating high-salinity wastewater containing heavy metal Ni2+, Chem. Eng. J., 288 (2016a) 569–576.
  15. X. Liu, J. Wu, C. Liu, J. Wang, Removal of cobalt ions from aqueous solution by forward osmosis, Sep. Purif. Technol., 177 (2017) 8–20.
  16. K.L. Lee, R.W. Baker, H.K. Lonsdale, Membranes for power generation by pressure-retarded osmosis, J. Membr. Sci., 8 (1981) 141–171.
  17. S. Loeb, L. Titelman, E. Korngold, J. Freiman, Effect of porous support fabric on osmosis through a Loeb–Sourirajan type asymmetric membrane, J. Membr. Sci., 129 (1997) 243–249.
  18. T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis: principles, applications, and recent developments, J. Membr. Sci., 281 (2006) 70–87.
  19. J.R. McCutcheon, M. Elimelech, Modeling water flux in forward osmosis: implications for improved membrane design, AIChE J. 53 (2007) 1736–1743.
  20. T. Ruprakobkit, L. Ruprakobkit, C. Ratanatamskul, Carboxylic acid concentration by forward osmosis processes: dynamic modeling, experimental validation and simulation, Chem. Eng. J., 306 (2016) 538–549.
  21. K. Touati, F. Tadeo, C. Hanel, T. Schiestel, Effect of the operating temperature on hydrodynamics and membrane parameters in pressure retarded osmosis, Desal. Wat. Treat., 57 (2016) 10477–10489.
  22. J.S. Collura, D.E. Harrison, C.J. Richards, T.K. Kole, M.R. Fisch, The effects of concentration, pressure, and temperature on the diffusion coefficient and correlation length of SDS Micelles, J. Phys. Chem. B, 105 (2001) 4846–4852.
  23. A. Boubakri, S.A.T. Bouguecha, I. Dhaouadi, A. Hafiane, Effect of operating parameters on boron removal from seawater using membrane distillation process, Desalination, 373 (2015) 86–93.
  24. C.-Y. Wu, H. Mouri, S.-S. Chen, D.-Z. Zhang, M. Koga, J. Kobayashi, Removal of trace-amount mercury from wastewater by forward osmosis, J. Water Process Eng., 14 (2016) 108–116.
  25. X. Zhang, Q. Lia, J. Wang, J. Li, C. Zhao, D. Hou, The main aim of this part is to determine the optimal operating conditions, in which the water flux and the retention rate were relatively high, J. Environ. Chem. Eng., 5 (2017) 2508–2514.
  26. S. Phuntsho, F. Lotfi, S. Hong, D.L. Shaffer, M. Elimelech, H. Kyong Shon, Membrane scaling and flux decline during fertiliser-drawn forward osmosis desalination of brackish groundwater, Water Res., 57 (2014) 172–182.
  27. P. Zhao, B. Gao, Q. Yue, S. Liu, H.K. Shon, Effect of high salinity on the performance of forward osmosis: water flux, membrane scaling and removal efficiency, Desalination, 378 (2016) 67–73.
  28. Y. Cui, X.Y. Liu, T.S. Chung, M. Weber, C. Staudt, C. Maletzko, Removal of organic micro-pollutants (phenol, aniline and nitrobenzene) via forward osmosis (FO) process: evaluation of FO as an alternative method to reverse osmosis (RO), Water Res., 91 (2016) 104–114.
  29. H.T. Nguyen, N.C. Nguyen, S.S. Chen, H. Ngo, W. Guo, C.W. Li, A new class of draw solutions for minimizing reverse salt flux to improve forward osmosis desalination, Sci. Total Environ., 538 (2015) 129–136.
  30. S. Phuntsho, H.K. Shon, S.K. Hong, S.Y. Lee, S. Vigneswaran, A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: evaluating the performance of fertilizer draw solutions, J. Membr. Sci., 375 (2011) 172–181.
  31. T.S. Chung, S. Zhang, K.Y. Wang, J. Su, M.M. Ling, Forward osmosis processes: yesterday, today and tomorrow, Desalination, 287 (2012) 78–81.
  32. J.R. McCutcheon, R.L. McGinnis, M. Elimelech, Desalination by ammonia–carbon dioxide forward osmosis: influence of draw and feed solution concentrations on process performance, J. Membr. Sci., 278 (2006) 114–123.
  33. S. Phuntsho, H.K. Shon, S. Vigneswaran, J. Kandasamy, S.K. Hong, S.Y. Lee, Influence of temperature and temperature difference in the performance of forward osmosis desalination process, J. Membr. Sci., 415–416 (2012) 734–744.
  34. G.T. Gray, J.R. McCutcheon, M. Elimelech, Internal concentration polarization in forward osmosis: role of membrane orientation, Desalination, 197 (2006) 1–8.
  35. K.Y. Wang, M.M. Teoh, A. Nugroho, T.S. Chung, Integrated forward osmosis–membrane distillation (FO–MD) hybrid system for the concentration of protein solutions, Chem. Eng. Sci., 66 (2011) 2421–2430.
  36. S. Choua, R. Wanga, L. Shi, Q. Shea, C. Tanga, A.G. Fane, Thinfilm composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density, J. Membr. Sci., 389 (2012) 25–33.
  37. S. Benavides, W.A. Phillip, Water recovery and solute rejection in forward osmosis modules: modeling and bench-scale experiments, J. Membr. Sci., 505 (2016) 26–35.
  38. J.R. McCutcheon, R.L. McGinnis, M. Elimelech, A novel ammonia—carbon dioxide forward (direct) osmosis desalination process, Desalination, 174 (2005) 1–11.
  39. M. Xie, W.E. Price, L.D. Nghiem, M. Elimelech, Effects of feed and draw solution temperature and transmembrane temperature difference on the rejection of trace organic contaminants by forward osmosis, J. Membr. Sci., 438 (2013) 57–64.
  40. W. Wang, Y. Zhang, M. Esparra-Alvarado, X. Wang, H. Yang, Y. Xie, Effects of pH and temperature on forward osmosis membrane flux using rainwater as the makeup for cooling water dilution, Desalination, 351 (2014) 70–76.