References

  1. M.A. Antar, M.H. Sharqawy, Experimental investigation on the performance of an air heated humidification-dehumidification desalination system, Desal. Water Treat., 51 (2013) 837–843.
  2. Y. Ghalavand, M.S. Hatamipour, A. Rahimi, A review on energy consumption of desalination process, Desal. Water Treat., (2014) 1–16.
  3. G.P. Narayan, M.H. Sharqawy, E.K. Summers, J.H. Lienhard, S.M. Zubair, M.A. Antar, The potential of solar-driven humidification-dehumidification desalination for small scale decentralized water production, Renew. Sustain. Energy Rev., 14 (2010) 1187–1201.
  4. A.S. Nafey, H.E.S. Fath, S.O. El-Helaby, A. Soliman, Solar desalination using humidification-dehumidification process. Part II. An experimental investigation, Energy Convers. Manag., 45 (2004) 1263–1277.
  5. X. Li, G. Yuan, Z. Wang, H. Li, Z. Xu, Experimental study on a humidification and dehumidification desalination system of solar air heater with evacuated tubes, Desalination, 351 (2014) 1–8.
  6. F.A. Al-Sulaiman, M.I. Zubair, M. Atif, P. Gandhidasan, S.A. Al-Dini, M.A. Antar, Humidification dehumidification desalination system using parabolic trough solar air collector, Appl. Therm. Eng., 75 (2015) 809–816.
  7. T. Rajaseenivasan, K. Srithar, Potential of a dual purpose solar collector on humidification dehumidification desalination, Desalination, 404 (2017) 35–40.
  8. M.A. Younis, M.A. Darwish, F. Juwayhel, Experimental and theoretical of a humidification-dehumidification desalination system, Desalination, 94 (1993) 11–24.
  9. A. Fouda, S.A. Nada, H.F. Elattar, An integrated A/C and HDH water desalination system assisted by solar energy: Transient analysis and economical study, Appl. Therm. Eng., 108 (2016) 1320–1335.
  10. H.F. Elattar, A. Fouda, S.A. Nada, Performance investigation of a novel solar hybrid air conditioning and humidification-dehumidification water desalination system, Desalination, 382 (2016) 28–42.
  11. M. Sadeghi, M. Yari, S.M.S. Mahmoudi, M. Jafari, Thermodynamic analysis and optimization of a novel combined ejector refrigeration cycle-desalination system, Appl. Energ., 208 (2017) 239–251.
  12. S.A. Nada, H.F. Elattar, A. Fouda, Experimental study for hybrid humidification-dehumidification water desalination and air conditioning system, Desalination, 363 (2015) 112–125.
  13. S. Anand, A. Gupta, S.K. Tyagi, Simulation studies of refrigeration cycles: A review, Renew. Sustain. Energy Rev., 17 (2013) 260–277.
  14. M. Saouliotis, N. Arnaoutakis, G. Panaras, A. Kavga, S. Papaefthimiou, Experimental study and life cycle assessment (LCA) of hybrid photovoltaic/thermal (PV/T) solar systems for domestic applications, Renew. Energ., 126 (2018) 708–723.
  15. P. Ponraj, D.P. Winston, A.E. Kabeel, B.P. Kumar, A.M. Manokar, R. Sathyamurthy, S.C. Christabel, Experimental investigation on Peltier based hybrid PV/T active solar still for enhancing the overall performance, Energy Convers. Manag., 168 (2018) 371–381.
  16. A.M. Manokar, D.P. Winston, A.E. Kabeel, S.A. El-Agouz, R. Sathyamurthy, T. Arunkumar, B. Madhu, A. Ahsan, Integrated PV/T solar still-A mini-review, Desalination, 435 (2018) 259–267.
  17. A. Giwa, H. Fath, S.W. Hasan, Humidification-dehumidification desalination process driven by photovoltaic thermal energy recovery (PV-HDH) for small-scale sustainable water and power production, Desalination, 377 (2016) 163–171.
  18. F. Calise, M.D. d’Accadia, A. Piacentiono, A novel solar trigeneration system integrating PVT (photovoltaic thermal collectors) and SW (seawater) desalination: Dynamic simulation and economic assessment, Energy, (2014) 1–20.
  19. B. Su, W. Qu, W. Han, H. Jin, Feasibility of a hybrid photovoltaic/thermal and liquid desiccant system for deep dehumidification, Energy Convers. Manag., 163 (2018) 457–467.
  20. A. Ramos, M.A. Chatzopoulou, I. Guarracino, J. Freeman, C.N. Markides, Hybrid photovoltaic-thermal solar systems for combined heating, cooling and power provision in the urban environment, Energy Convers. Manag., 150 (2017) 838–850.
  21. C. Renno, F. Petito, Design and modelling of a concentrating photovoltaic thermal (CPV/T) system for a domestic application, Energ. Buildings, 62 (2013) 392–402.
  22. G. Mittelman, A. Kribus, A. Dayan, Solar cooling with concentration photovoltaic/thermal (CPVT) system, Energy Convers. Manag., 48 (2007) 2481–2490.
  23. F. Almonacid, P.J. Perez-Higueras, E.F. Fernandez, P. Rodrige, Relation between the cell temperature of a HCPV module and atmospheric parameters, Sol. Energy Mater Sol. Cells, 105 (2012) 322–327.
  24. A. Kribus, D. Kaftori, G. Mittelman, A. Hirshfeld, Y. Flitsanov, A. Dayan, A miniature concentrating photovoltaic and thermal system, Energy Convers. Manag., 47 (2006) 3582–3590.
  25. C. Chiranjeevi, T. Srinivas, Augmented desalination with cooling integration, Int. J. Refrig., 80 (2017) 106–119.
  26. G.F. Hewitt, G.L. Shires, T.R. Bott, Process Heat Transfer, CRC Press, NewYork, Begell House,1994.
  27. W.F. Stoecker, J.W. Jones, Refrigeration and Air Conditioning, McGraw-Hill, New York, 1982.
  28. K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, T. Fuyuki, Annual output estimation of concentrator photovoltaic system using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell’s characteristics and field-test metrological data, Sol. Energy Mater Sol. Cells, 90 (2006) 57–67.