References

  1. X. Quan, H. Shi, H. Liu, J. Wang, Y. Qian, Removal of 2,4-dichlorophenol in a conventional activated sludge system through bioaugmentation, Process Biochem., 39 (2004) 1701–1707.
  2. A. Kumar, S. Kumar, S. Kumar, Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194, Biochem. Eng. J., 22 (2005) 151–159.
  3. R.-S. Juang, S.-Y. Tsai, Growth kinetics of Pseudomonas putida in the biodegradation of single and mixed phenol and sodium salicylate, Biochem. Eng. J., 31 (2006) 133–140.
  4. G.D. Ruan, Theory and practice of phenols removal in various wastewater, Ind. Pollut. Prev., 3 (1984) 88–103.
  5. H. Zilouei, B. Guieysse, B. Mattiasson, Biological degradation of chlorophenols in packed-bed bioreactors using mixed bacterial consortia, Process Biochem., 41 (2006) 1083–1089.
  6. V.M. Brown, D.H.M. Jordan, B.A. Tiller, The effect of temperature on the acute toxicity of phenol to rainbow trout in hard water, Water Res., 1 (1967) 587–597.
  7. S.-G. Wang, X.-W. Liu, H.-Y. Zhang, W.-X. Gong, X.-F. Sun, B.-Y. Gao, Aerobic granulation for 2,4-dichlorophenol biodegradation in a sequencing batch reactor, Chemosphere, 69 (2007) 769–775.
  8. C.C. Wang, C.M. Lee, C.H. Kuan, Removal of 2,4-dichlorophenol by suspended and immobilized Bacillus insolitus, Chemosphere, 41 (2000) 447–452.
  9. M.-W. Jung, K.-H. Ahn, Y. Lee, K.-P. Kim, J.-S. Rhee, J.T. Park, K.-J. Paeng, Adsorption characteristics of phenol and chlorophenols on granular activated carbons (GAC), Microchem. J., 70 (2001) 123–131.
  10. S.H. Lin, C.S. Wang, Treatment of high-strength phenolic wastewater by a new two-step method, J. Hazard. Mater., 90 (2002) 205–216.
  11. J.-H. Kim, K.-K. Oh, S.-T. Lee, S.-W. Kim, S.-I. Hong, Biodegradation of phenol and chlorophenols with defined mixed culture in shake-flasks and a packed bed reactor, Process Biochem., 37 (2002) 1367–1373.
  12. G. Buitrón, A. González, Characterization of the microorganisms from an acclimated activated sludge degrading phenolic compounds, Water Sci. Technol., 34 (1996) 289–294.
  13. E. Sahinkaya, F.B. Dilek, Biodegradation kinetics of 2,4-dichlorophenol by acclimated mixed cultures, J. Biotechnol., 127 (2007) 716–726.
  14. M. Bajaj, C. Gallert, J. Winter, Phenol degradation kinetics of an aerobic mixed culture, Biochem. Eng. J., 46 (2009) 205–209.
  15. G. Buitrón, B. Capdeville, Enhancement of the biodegradation activity by the acclimation of the inoculum, Environ. Technol., 16 (1995) 1175–1184.
  16. B. Foulkes, S.K. Khanal, S.H. Sung, Bioleaching of zinc and copper from anaerobically digested swine manure: effect of sulfur levels and solids contents, Water Environ. Res., 78 (2006) 202–208.
  17. A.A. Zorpas, D. Arapoglou, K. Panagiotis, Waste paper and clinoptilolite as a bulking material with dewatered anaerobically stabilized primary sewage sludge (DASPSS) for compost production, Waste Manage., 23 (2003) 27–35.
  18. S. Wang, Y. Boyjoo, A. Choueib, Z.H. Zhu, Removal of dyes from aqueous solution using fly ash and red mud, Water Res., 39 (2005) 129–138.
  19. G. Tchobanoglous, Wastewater Engineering: Treatment Disposal Reuse, Metcalf and Eddy Inc., McGraw-Hill, New York, 1991.
  20. M. Bajaj, C. Gallert, J. Winter, Biodegradation of high phenol containing synthetic wastewater by an aerobic fixed bed reactor, Bioresour. Technol., 99 (2008) 8376–8381.
  21. B. Guieysse, I. Bernhoft, B.E. Andersson, T. Henrysson, S. Olsson, B. Mattiasson, Degradation of acenaphthene, phenanthrene and pyrene in a packed-bed biofilm reactor, Appl. Microbiol. Biotechnol., 54 (2000) 826–831.
  22. A. Soares, B. Guieysse, B. Mattiasson, Biodegradation of nonylphenol in a continuous packed-bed bioreactor, Biotechnol. Lett., 25 (2003) 927–933.
  23. G. Buitrón, A. González, L.M. López-Marin, Biodegradation of phenolic compounds by an acclimated activated sludge and isolated bacteria, Water Sci. Technol., 37(1998) 371–378.
  24. S. Han, Q. Yue, M. Yue, B. Gao, Y. Zhao, W. Cheng, Effect of sludge-fly ash ceramic particles (SFCP) on synthetic wastewater treatment in an A/O combined biological aerated filter, Bioresour. Technol., 100 (2009) 1149–1155.
  25. APHA, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, Washington, DC, 2005.
  26. T. Abuhamed, E. Bayraktar, T. Mehmetoğlu, Ü. Mehmetoğlu, Kinetics model for growth of Pseudomonas putida F1 during benzene, toluene and phenol biodegradation, Process Biochem., 39 (2004) 983–988.
  27. X.-P. Liu, Kinetics of cometabolic degradation of 2-chlorophenol and phenol by Pseudomonas putida, Water Sci. Eng., 2 (2009) 110–120.
  28. M.T. Suidan, Y.-T. Wang, Unified analysis of biofilm kinetics, J. Environ. Eng., ASCE, 111 (1985) 634–646.
  29. O.J. Hao, M.H. Kim, E.A. Seagren, H. Kim, Kinetics of phenol and chlorophenol utilization by Acinetobacter species, Chemosphere, 46 (2002) 797–807.
  30. R.-S. Juang, S.-Y. Tsai, Role of membrane-attached biofilm in the biodegradation of phenol and sodium salicylate in microporous membrane bioreactors, J. Membr. Sci., 282 (2006) 484–492.
  31. P.S. Majumder, S.K. Gupta, Degradation of 4-Chlorophenol in UASB reactor under methanogenic conditions, Bioresour. Technol., 99 (2008) 4169–4177.
  32. J.-H. Tay, Y.-X. He, Y.-G. Yan, Improved anaerobic degradation of phenol with supplemental glucose, J. Environ. Eng., ASCE, 127 (2001) 38–45.
  33. E. Sahinkaya, F.B. Dilek, Effects of 2,4-dichlorophenol on activated sludge, Appl. Microbiol. Biotechnol., 59 (2002) 361–367.
  34. P. Sivarajan, V. Arutchelvan, S. Nagarajan, Biodegradation kinetics of 2-chlorophenol with starch water as co-substrate using anaerobic batch reactor, Int. J. Eng. Res. Technol., 5 (2016) 141–145.
  35. Ö. Aktaş, Effect of S0/X0 ratio and acclimation on respirometry of activated sludge in the cometabolic biodegradation of phenolic compounds, Bioresour. Technol., 111 (2012) 98–104.
  36. H. Yoon, G. Klinzing, H.W. Blanch, Competition for mixed substrates by microbial populations, Biotechnol. Bioeng., 19 (1977) 193–210.
  37. C.E. Wilke, P. Chang, Correlation of diffusion coefficients in dilute solutions, AIChE J., 1 (1955) 264–270.
  38. C.-G. Jih, J.-S. Huang, Effect of biofilm thickness distribution on substrate-inhibited kinetics, Water Res., 28 (1994) 967–973.
  39. E.L. Cussler, Diffusion: Mass Transfer in Fluid System, 2nd ed., Cambridge University Press, New York, 1984.
  40. G.E. Speitel Jr., F.A. DiGiano, Biofilm shearing under dynamic conditions, J. Environ. Eng., ASCE, 113 (1987) 464–475.
  41. B.E. Rittmann, P.L. McCarty, Evaluation of steady-state-biofilm kinetics, Biotechnol. Bioeng., 22 (1980) 2359–2373.
  42. A.K. Pour, D. Karamanev, A. Margaritis, Kinetic modeling of the biodegradation of the aqueous p-xylene in the immobilized soil bioreactor, Biochem. Eng. J., 27 (2006) 204–211.
  43. S.J. Kulkarni, J.P. Kaware, Review on research for removal of phenol from wastewater, Int. J. Sci. Res. Pub., 3 (2013) 1–5.
  44. M. Bajaj, C. Gallert, J. Winter, Anaerobic biodegradation of high strength 2-chlorophenol-containing synthetic wastewater in a fixed bed reactor, Chemosphere, 73 (2008) 705–710.