References

  1. P.N. Dave, S. Kaur, E. Khosla, Removal of Eriochrome black-T by adsorption on to eucalyptus bark using green technology, Indian J. Chem. Technol., 18 (2011) 53–60.
  2. Z. Carmen, S. Daniela, Textile Organic Dyes–Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents–A Critical Overview, Intechopen Publications, London, 2012,p. 54–86.
  3. C. Pearce, J.R. Lloyd, J.T. Guthrie, The removal of colour from textile wastewater using whole bacterial cells: a review, Dyes Pigm., 58 (2003) 179–196.
  4. N. Barka, M. Abdennouri, M.E.L. Makhfouk, Removal of Methylene Blue and Eriochrome Black T from aqueous solutions by biosorption on Scolymus hispanicus L.: kinetics, equilibrium and thermodynamics, J. Taiwan Inst. Chem. Eng., 42 (2011) 320–326.
  5. P.A. Carneiro, G.A. Umbuzeiro, D.P. Oliveira, M.V.B. Zanoni, Assessment of water contamination caused by a mutagenic textile effluent/dyehouse effluent bearing disperse dyes, J. Hazard. Mater., 174 (2010) 694–699.
  6. R.O.A. de Lima, A.P. Bazo, D.M.F. Salvadori, C.M. Rech, D. de Palma Oliveira, G. de Aragão Umbuzeiro, Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source, Mutat. Res. Genet. Toxicol. Environ. Mutagen., 626 (2007) 53–60.
  7. D. Rawat, V. Mishra, R.S. Sharma, Detoxification of azo dyes in the context of environmental processes, Chemosphere, 155 (2016) 591–605.
  8. K.Y. Foo, B.H. Hameed, Microwave-assisted preparation of oil palm fiber activated carbon for methylene blue adsorption, Chem. Eng. J., 166 (2011) 792–795.
  9. S. Sadaf, H. Bhatti, S. Nausheen, S. Noreen, Potential use of low-cost lignocellulosic waste for the removal of Direct Violet 51 from aqueous solution: equilibrium and breakthrough studies, Arch. Environ. Contam. Toxicol., 66 (2014) 557–571.
  10. S. Noreen, H.N. Bhatti, Fitting of equilibrium and kinetic data for the removal of Novacron Orange P-2R by sugarcane bagasse, J. Ind. Eng. Chem., 20 (2014) 1684–1692.
  11. S. Sadaf, H. Bhatti, Evaluation of peanut husk as a novel, low cost biosorbent for the removal of Indosol Orange RSN dye from aqueous solutions: batch and fixed bed studies, Clean Technol. Environ. Policy, 16 (2014) 527–544.
  12. S. Nausheen, H.N. Bhatti, Z. Furrukh, S. Sadaf, S. Noreen, Adsorptive removal of Drimarine Red HF-3D dye from aqueous solution using low-cost agricultural waste: batch and column study, Chem. Ecol., 30 (2014) 376–392.
  13. B.H. Hameed, A.T.M. Din, A.L. Ahmad, Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies, J. Hazard. Mater., 141 (2007) 819–825.
  14. A.L. Cazetta, A.M.M. Vargas, E.M. Nogami, M.H. Kunita, M.R. Guilherme, A.C. Martins, T.L. Silva, J.C.G. Moraes, V.C. Almeida, NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption, Chem. Eng. J., 174 (2011) 117–125.
  15. M.Z. Alam, S.A. Muyibi, M.F. Mansor, R. Wahid, Activated carbons derived from oil palm empty-fruit bunches: application to environmental problems, J. Environ. Sci., 19 (2007) 103–108.
  16. A.M. Faizal, S.R.M. Kutty, E.H. Ezechi, Modelling of Adams-Bohart and Yoon-Nelson on the removal of oil from water using microwave incinerated rice husk ash (MIRHA), Appl. Mech. Mater., 625 (2014) 788–791.
  17. S.R.M. Kutty, E.H. Ezechi, S.G. Khaw, C.L. Lai, M.H. Isa, Evaluation of copper removal using MIRHA as an adsorbent in a continuous flow activated sludge system, Water Pollut. XII, 182 (2014) 233–244.
  18. S. Kutty, E. Ezechi, S. Khaw, C. Lai, M. Isa, Comparison of the effect of two support materials on copper removal from aqueous solution in the activated sludge process, Energy and Sustainability V: Special Contrib., 206 (2015) 149–159.
  19. V. Ponnusami, R. Aravindhan, N. Karthik Raj, G. Ramadoss, S. Srivastava, Adsorption of methylene blue onto gulmohar plant leaf powder: equilibrium, kinetic, and thermodynamic analysis, J. Environ. Prot. Sci., 3 (2009) 1–10.
  20. E.H. Ezechi, S.R. bin Mohamed Kutty, A. Malakahmad, M.H. Isa, N. Aminu, I.U. Salihi, Removal of methylene blue from dye effluent using ageratum conyzoide leaf powder (ACLP), AIP Conf. Proc., 1669 (2015) 020013.
  21. E.H. Ezechi, S.R. bin Mohamed Kutty, A. Malakahmad, I.U. Salihi, N. Aminu, Determination of optimum range for hexavalent chromium Cr (VI) removal using ageratum conyzoide leaf powder (ACLP), AIP Conf. Proc., 1669 (2015) 020014.
  22. K.G. Bhattacharyya, A. Sharma, Kinetics and thermodynamics of Methylene Blue adsorption on Neem (i-Azadirachta indica) leaf powder, Dyes Pigm., 65 (2005) 51–59.
  23. S.K. Behera, H. Meena, S. Chakraborty, B. Meikap, Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal, Int. J. Min. Sci. Technol., 28 (2018) 621–629.
  24. E.H. Ezechi, M.H. Isa, S.R. bin Mohamed Kutty, Z. Ahmed, Electrochemical removal of boron from produced water and recovery, J. Environ. Chem. Eng., 3 (2015) 1962–1973.
  25. M. Amini, H. Younesi, N. Bahramifar, A.A.Z. Lorestani, F. Ghorbani, A. Daneshi, M. Sharifzadeh, Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger, J. Hazard. Mater., 154 (2008) 694–702.
  26. J.L. Pilkington, C. Preston, R.L. Gomes, Comparison of response surface methodology (RSM) and artificial neural networks (ANN) towards efficient extraction of artemisinin from Artemisia annua, Ind. Crops Prod., 58 (2014) 15–24.
  27. E.H. Ezechi, S.R.b. M. Kutty, M.H. Isa, M.S. Liew, Application of response surface methodology for the optimization of hexavalent chromium removal using a new low-cost adsorbent, Desal. Wat. Treat., 57 (2016) 22507–22518.
  28. D. Fu, Y. Zhang, F. Lv, P.K. Chu, J. Shang, Removal of organic materials from TNT red water by bamboo charcoal adsorption, Chem. Eng. J., 193 (2012) 39–49.
  29. C. Yao, T. Chen, A film-diffusion-based adsorption kinetic equation and its application, Chem. Eng. Res. Des., 119 (2017) 87–92.
  30. M.A. Fulazzaky, Determining the resistance of mass transfer for adsorption of the surfactants onto granular activated carbons from hydrodynamic column, Chem. Eng. J., 166 (2011) 832–840.
  31. O. Zongram, N. Ruangrungsi, K. Rungsihirunrat, RAPD fingerprinting and genetic relationship of Gardenia species in Thailand, Songklanakarin J. Sci. Technol., 39 (2017) 471–477.
  32. E.H. Ezechi, M.H. Isa, S.R. Kutty, N.B. Sapari, Boron Recovery, Application and Economic Significance: A Review, National Postgraduate Conference (NPC) Perak, Malaysia, 19–20 September 2011, IEEE ISBN 978-1-4577-1882-3, pp. 815–820.
  33. M.A. Fulazzaky, M. Nuid, A. Aris, K. Muda, Kinetics and mass transfer studies on the biosorption of organic matter from palm oil mill effluent by aerobic granules before and after the addition of Serratia marcescens SA30 in a sequencing batch reactor, Process Saf. Environ. Prot., 107 (2017) 259–268.
  34. M.A. Fulazzaky, M.H. Khamidun, R. Omar, Understanding of mass transfer resistance for the adsorption of solute onto porous material from the modified mass transfer factor models, Chem. Eng. J., 228 (2013) 1023–1029.
  35. C.R. Girish, V.R. Murty, Mass transfer studies on adsorption of phenol from wastewater using Lantana camara, forest waste, Int. J. Chem. Eng., 2016 (2016) 11. http://dx.doi.org/10.1155/2016/5809505.
  36. H.K. Boparai, M. Joseph, D.M. O’Carroll, Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles, J. Hazard. Mater., 186 (2011) 458–465.
  37. T. Lee, Z.A. Zubir, F.M. Jamil, A. Matsumoto, F.-Y. Yeoh, Combustion and pyrolysis of activated carbon fibre from oil palm empty fruit bunch fibre assisted through chemical activation with acid treatment, J. Anal. Appl. Pyrolysis, 110 (2014) 408–418.
  38. N.S.A. Wafti, H.L.N. Lau, S.K. Loh, A.A. Aziz, Z. Ab Rahman, C.Y. May, Activated carbon from oil palm biomass as potential adsorbent for palm oil mill effluent treatment, J. Oil Palm Res., 29 (2017) 278–290.
  39. A. Ahmad, M. Loh, J. Aziz, Preparation and characterization of activated carbon from oil palm wood and its evaluation on methylene blue adsorption, Dyes Pigm., 75 (2007) 263–272.
  40. M.A. Hossain, H.H. Ngo, W.S. Guo, T.V. Nguyen, Palm oil fruit shells as biosorbent for copper removal from water and wastewater: experiments and sorption models, Bioresour. Technol., 113 (2012) 97–101.
  41. S. Thangalazhy-Gopakumar, W.M.A. Al-Nadheri, D. Jegarajan, J.N. Sahu, N.M. Mubarak, S. Nizamuddin, Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production, Bioresour. Technol., 178 (2015) 65–69.
  42. M. Kazemipour, M. Ansari, S. Tajrobehkar, M. Majdzadeh, H.R. Kermani, Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone, J. Hazard. Mater., 150 (2008) 322–327.
  43. M.O. Saeed, K.A.M. Azizli, M.H. Isa, E.H. Ezechi, Treatment of POME using Fenton oxidation process: removal efficiency, optimization, and acidity condition, Desal. Wat. Treat., 57 (2016) 23750–23759.
  44. H. El Boujaady, M. Mourabet, M. Bennani-Ziatni, A. Taitai, Adsorption/desorption of Direct Yellow 28 on apatitic phosphate: mechanism, kinetic and thermodynamic studies, J. Assoc. Arab Univ. Basic Appl. Sci., 16 (2014) 64–73.
  45. M. Ghaedi, A. Ansari, M.H. Habibi, A.R. Asghari, Removal of malachite green from aqueous solution by zinc oxide nanoparticle loaded on activated carbon: kinetics and isotherm study, J. Ind. Eng. Chem., 20 (2014) 17–28.
  46. M. Roosta, M. Ghaedi, A. Daneshfar, S. Darafarin, R. Sahraei, M.K. Purkait, Simultaneous ultrasound-assisted removal of sunset yellow and erythrosine by ZnS: Ni nanoparticles loaded on activated carbon: optimization by central composite design, Ultrason. Sonochem., 21 (2014) 1441–1450.
  47. P.R. Souza, G.L. Dotto, N.P.G. Salau, Statistical evaluation of pore volume and surface diffusion model in adsorption systems, J. Environ. Chem. Eng., 5 (2017) 5293–5297.
  48. M.A. Fulazzaky, S. Abdullah, M.R. Salim, Fundamentals of mass transfer and kinetics for biosorption of oil and grease from agro-food industrial effluent by Serratia marcescens SA30, RSC Adv., 5 (2015) 104666–104673.
  49. A. Itodo, F. Abdulrahman, L. Hassan, S. Maigandi, H. Itodo, Intraparticle diffusion and intraparticulate diffusivities of herbicide on derived activated carbon, Researcherm, 2 (2010) 74–86.
  50. F.-C. Wu, R.-L. Tseng, R.-S. Juang, Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics, Chem. Eng. J., 153 (2009) 1–8.
  51. A. Özcan, E.M. Öncü, A.S. Özcan, Adsorption of Acid Blue 193 from aqueous solutions onto DEDMA-sepiolite, J. Hazard. Mater., 129 (2006) 244–252.
  52. M. Kapur, M.K. Mondal, Mass transfer and related phenomena for Cr (VI) adsorption from aqueous solutions onto Mangifera indica sawdust, Chem. Eng. J., 218 (2013) 138–146.
  53. G. Walker, L. Hansen, J.-A. Hanna, S. Allen, Kinetics of a reactive dye adsorption onto dolomitic sorbents, Water Res., 37 (2003) 2081.