References

  1. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293 (2001) 269–271.
  2. Y. Zhou, F.S. Liu, S.T. Yu, Preparation and photo-catalytic activities of FeOOH/ZnO/MMT composite, Appl. Surf. Sci., 355 (2015) 861–867.
  3. Y.S. Malghe, A.B. Lavand, Synthesis, characterization and investigation of visible light photocatalytic activity of C, N co-doped ZnO, Mater. Lett., 7 (2016) 181–186.
  4. Y. Zhang, C. Pan, TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light, J. Mater. Sci., 46 (2011) 2622–2626.
  5. J. Wang, S. Yang, X. Liu, Preparation and characterization of ZrO2 thin film on sulfonated self-assembled monolayer of 3-mercaptopropyl trimethoxysilane, Appl. Surf. Sci., 221 (2004) 272–280.
  6. C. Martinez, M.L. Canle, M.I. Fernández, J.A. Santaballa, J. Faria, Kinetics and mechanism of aqueous degradation of carbamazepine by heterogeneous photocatalysis using nanocrystalline TiO2, ZnO and multi-walled carbon nanotubes-anatase composites, Appl. Catal. B, 102 (2011) 563–571.
  7. Y.D. Wang, S. Zhang, C.L. Ma, H.D. Li, Synthesis and room temperature photoluminescence of ZnO/CTAB ordered layered nano-composite with flake-like architecture, J. Lumin., 126 (2007) 661–664.
  8. D.Y. Fu, G.Y. Han, Y. Chang, J.H. Dong, The synthesis and properties of ZnO-graphene nano hybrid for photodegradation of organic pollutant in water, Mater. Chem. Phys., 132 (2012) 673–681.
  9. X. Sun, H.X. Yu, D. Zheng, X.S. Wang, J.S. Li, L.J. Wang, Incorporation of nanoscale zero-valent iron particles inside the channels of SBA-15 silica rods by a “two solvents” reduction technique, Appl. Surf. Sci., 279 (2013) 1–6.
  10. J.V.D. Meer, I. Bardezgiboire, C. Mercier, B. Revel, A. Davidson, R. Denoyel, Mechanism of metal oxide nanoparticle loading in SBA-15 by the double solvent technique, J. Phys. Chem. C, 114 (2010) 3507–3515.
  11. W. Choi, A. Terrain, M.R. Hoffman, The role of metal ion dopants in quantum-sized TiO2 correction between photo reactivity and charge C, J. Phys. Chem., 98 (1994) 13669–13679.
  12. S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation, Langmuir, 26 (2010) 3894–3901.
  13. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 279 (1998) 548–552.
  14. M. Anbia, S. Amirmahmoodi, Adsorption of phenolic compounds from aqueous solutions using functionalized SBA-15 as a nano-sorbent, Scientia Iranica., 18 (2011) 446–452.
  15. Y. Zhou, F.S. Liu, Z.Y. Sun, Y.Y. Chu, Preparation and photocatalytic activities of Ag/FeOOH/SBA-15 composite, J. Photoch. Photobio. A, 336 (2017) 17–24.
  16. A.R. Malagutti, H.L. Mourao, J.R. Garbin, Deposition of TiO2 and Ag: TiO2 thin films by the polymeric precursor method and their application in the photo degradation of textile dyes, Appl. Catal. B, 90 (2009) 205–212.
  17. P. Wang, D. Chen, F.Q. Tang, Preparation of titania-coated polystyrene particles in mixed solvents by ammonia catalysis, Langmuir, 22 (2006) 4832–4835.
  18. T.J. Xin, M.L. Ma, H.P. Zhang, J.W. Gu, S.J. Wang, M.J. Liu, Q.Y. Zhang, A facile approach for the synthesis of magnetic separable Fe3O4@TiO2 core-shell nano composites as highly recyclable photo catalysts, Appl. Surf. Sci., 288 (2014) 51–59.
  19. M.K. Lee, T.G. Kim, W. Kim, T. Kin, Y.M. Sung, Surface plasmon resonance (SPR) electron and energy transfer in noble metal-zinc oxide composite nanocrystals, J. Phys. Chem. C, 112 (2008) 10079–10082.
  20. R.F. Dong, B.Z. Tian, J.L. Zhang, T.T. Wang, Q.S. Tao, S.Y. Bao, F. Yang, C.Y. Zeng, AgBr/Ag/TiO2 core-shell composite with excellent visible light photo-catalytic activity and hydrothermal stability, Catal. Commun., 38 (2013) 16–20.
  21. D.S. Wang, L. Shi, Q.Z. Luo, X.Y. Lei, J. An, An efficient visible light photo-catalyst prepared from TiO2 and polyvinyl chloride, J. Mater. Sci., 47 (2012) 2136–2145.
  22. C. Hu, T.W. Peng, X.X. Hu, Y.L. Nie, X.F. Zhou, J.H. Qu, H. He, Plasmon-induced photo degradation of toxic pollutants with Ag/AgI/Al2O3 under visible-light irradiation, J. Am. Chem. Soc., 132 (2010) 857–862.
  23. H. Maki, Y. Okumura, H. Ikuta, M. Mizuhata, Ionic equilibria for synthesis of TiO2 thin films by the liquid-phase deposition, J. Phys. Chem. C, 118 (2014) 11964–11974.
  24. R.S. Yuan, J.T. Zheng, R.B. Guan, Y.C. Zhao, Surface characteristics and photocatalytic activity of TiO2 loaded on activated carbon fibers, Colloid. Surf. A, 254 (2005) 131–136.
  25. H. Lachheb, O. Ahmed, A. Houas, Photocatalytic activity of TiO2-SBA-15 under UV and visible light, J. Photoch. Photobio. A, 226 (2011) 1–8.
  26. L. Shi, L. Liang, J. Ma, Highly efficient visible light-driven Ag/AgBr/ZnO composite photocatalyst for degrading rhodamine B, Ceram. Int., 40 (2014) 3495–3502.
  27. Y.S. Liu, S.H. Wei, W. Gao, Ag/ZnO heterostructures and their photocatalytic activity under visible light: effect of reducing medium, J. Hazard. Mater., 287 (2015) 59–68.
  28. Z. Chen, L. Fang, W. Dong, Inverse opal structured Ag/TiO2 plasmonic photocatalyst prepared by pulsed current deposition and its enhanced visible light photocatalytic activity, J. Mater. Chem. A, 2 (2014) 824–832.