References

  1. A.W. Mohammad, M.S. Takriff, Predicting flux and rejection of multicomponent salts mixture in nanofiltration membranes, Desalination, 157 (2003) 105–111.
  2. N.S. Kotrappanavar, A.A. Hussain, M.E.E. Abashar, I.S. Al-Mutaz, T.M. Aminabhavi, M.N. Nadagouda, Prediction of physical properties of nanofiltration membranes for neutral and charged solutes, Desalination, 280 (2011) 174–182.
  3. T. Urase, J. Oh, K. Yamamoto, Effect of pH on rejection of different species of arsenic by nanofiltration, Desalination, 117 (1998) 11–18.
  4. K.P.M. Licona, L.R. de O. Geaquinto, J.V. Nicolini, N.G. Figueiredo, S.C. Chiapetta, A.C. Habert, L. Yokoyama, Assessing potential of nanofiltration and reverse osmosis for removal oftoxic pharmaceuticals from water, J. Water Process Eng., 25 (2018) 195–204.
  5. C. Zeng, S. Tanaka, Y. Suzuki, S. Fujii, Impact of feed water pH and membrane material on nanofiltration of perfluorohexanoic acid in aqueous solution, Chemosphere, 183 (2017) 599–604.
  6. Y. Song, T. Li, J. Zhou, Z. Li, C. Gao, Analysis of nanofiltration membrane performance during softening process of simulated brackish groundwater, Desalination, 399 (2016) 159–164.
  7. B.A.M. Al-Rashdi, D.J. Johnson, N. Hilal, Removal of heavy metal ions by nanofiltration, Desalination, 315 (2013) 2–17.
  8. D. Zhou, L. Zhu, Y. Fu, M. Zhu, L. Xue, Development of lower cost seawater desalination processes using nanofiltration technologies - A review, Desalination, 376 (2015) 109–116.
  9. A.E. Childress, M. Elimelech, Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics, Environ. Sci. Technol., 34 (2000) 3710–3716.
  10. Z. Wang, K. Xiao, X. Wang. Role of coexistence of negative and positive membrane surface charges in electrostatic effect for salt rejection by nanofiltration, Desalination, 444 (2018) 75–83.
  11. Z. Wang, G. Liu, Z. Fan, X. Yang, J. Wang, S. Wang, Experimental study on treatment of electroplating wastewater by nanofiltration, J. Membr. Sci., 305 (2007) 185–195.
  12. L.B. Chaudhari, Z.V.P. Murthy, Treatment of landfill leachates by nanofiltration, J. Environ. Manage., 91 (2010) 1209–1217.
  13. G.T. Ballet, L. Gzara, A. Hafiane, M. Dhahbi, Transport coefficients and cadmium salt rejection in nanofiltration membrane, Desalination, 167 (2004) 369–376.
  14. K.I. Popov, N.E. Kovaleva, G. Ya. Rudakova, S.P. Kombarova, V.E. Larchenko. Recent state-of-the-art of biodegradable scale inhibitors for cooling-water treatment applications, Therm. Eng., 63 (2016) 122–129.
  15. X. Li, H. Shemer, D. Hasson, R. Semiat, Characterization of the effectiveness of anti-scalants in suppressing scale deposition on a heated surface, Desalination, 397 (2016) 38–42.
  16. Y. Tang, W. Yang, X. Yin, Y. Liu, P. Yin, J. Wang, Investigation of CaCO3 scale inhibition by PAA, ATMPand PAPEMP, Desalination, 228 (2008) 55–60.
  17. L. Yang, J. Zhou, Q. She, M.P. Wan, R. Wang, V.W.-C. Chang, C.Y. Tang, Role of calcium ions on the removal of haloacetic acids from swimming pool water by nanofiltration: mechanisms and implications, Water Res., 110 (2017) 332–341.
  18. L. Yang, Q. She, M.P. Wan, R. Wang, V.W.-C. Chang, C.Y. Tang, Removal of haloacetic acids from swimming pool water by reverseosmosis and nanofiltration, Water Res., 116 (2017) 116–125.
  19. T. Arumugham, N.J. Kaleekkal, D. Rana, Fabrication of novel aromatic amine functionalized nanofiltration (NF) membranes and testing its dye removal and desalting ability, Polym. Test, 72 (2018) 1–10.
  20. R. Pairat, C. Sumeath, F.H. Browning, H.S. Fogler, Precipitation and dissolution of calcium - ATMP precipitates for the inhibition of scale formation in porous media, Langmuir, 13 (1997) 1791–1798.
  21. M. Mänttäri, A. Pihlajamäki, M. Nyström, Effect of pH on hydrophilicity and charge and their effect on the filtration efficiency of NF membranes at different pH, J. Membr. Sci., 280 (2006) 311–320.
  22. Y.-L. Lin, P.-C. Chiang, E.-E. Chang, Removal of small trihalomethane precursors from aqueous solution by nanofiltration, J. Hazard. Mater., 146 (2007) 20–29.
  23. A.E. Childress, M. Elimelech, Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes, J. Membr. Sci., 119 (1996) 253–268.
  24. B. Zhang, L. Zhang, F. Li, W. Hu, P.M. Hannam, Testing the formation of Ca-phosphonate precipitates and evaluating the anionic polymers as Ca-phosphonate precipitates and CaCO3 scale inhibitor in simulated cooling water, Corros. Sci., 52 (2010) 3883–3890.
  25. K.I. Popov, H. Rönkkömäki, L.H.J. Lajunen, Critical evaluation of stability constants of phosphonic acids, Pure Appl. Chem., 73 (2001) 1641–1677.
  26. R. Zhang, Z. Zhu, S. Deng, et al. Study on the coordination chemistry of ATMP with calcium ion and magnesium ions in aqueous solution, J. Ind. Water Treat., 23 (2003) 27–29 (in Chinese).
  27. K.I. Popov, M.S. Oshchepkov, N.A. Shabanova, Yu.M. Dikareva, V.E. Larchenko, E. Ya. Koltinova, DLS study of a phosphonate induced gypsum scale inhibitionmechanism using indifferent nanodispersions as the standards for light scattering intensity comparison, Int. J. Corros. Scale Inhib., 7 (2018) 9–24.
  28. B. Cuartas-Uribe, M.C. Vincent-Vela, S. Álvarez-Blanco, M.I. Alcaina-Miranda, E. Soriano-Costa, Prediction of solute rejection in nanofiltration processes using different mathematical models, Desalination, 200 (2006) 144–145.
  29. N. Ali, A.W. Mohammad, A.L. Ahmad, Use of nanofiltration predictive model for membrane selection and system cost assessment, Separ. Purif. Tech., 41 (2005) 29–37.
  30. A.W. Mohammad, A modified Donnan–steric-pore model for predicting flux and rejection of dye/NaCl mixture innanofiltration membranes, Separ. Sci. Technol., 37 (2002) 1009–1029.
  31. A. Hafiarle, D. Lemordant, M. Dhahbi, Removal of hexavalent chromium by nanofiltration, Desalination, 130 (2000) 305–312.
  32. I.C. Escobar, S. Hong, A.A. Randall, Removal of assimilable organic carbon and biodegradable dissolved organic carbon by reverse osmosis and nanofiltration membranes, J. Membr. Sci., 175 (2000) 1–17.
  33. J.-J. Qin, M.H. Oo, H. Lee, B. Coniglio, Effect of feed pH on permeate pH and ion rejection under acidic conditions in NF process, J. Membr. Sci., 232 (2004) 153–159.
  34. X.F. Chen, G. Yang, W.H. Xing, N.P. Xu, Effect of pH and salt on the performance of DK nanofiltration membrane, J. Nanjing Univ. Technol. (Natural Science Ed.), 35 (2013) 43–47 (in Chinese).
  35. Q. Li, M. Elimelech, Organic fouling and chemical cleaning of nanofiltration membranes: measurements and mechanisms, Environ. Sci. Technol., 38 (2004) 4683–4693.
  36. K.I. Popov, M.S. Oshchepkov, E.Ya. Afanas’evaa, E.Ya. Koltinova, Yu.M. Dikareva, H. Rönkkömäki, A new insight into the mechanism of the scale inhibition: DLS study of gypsum nucleation in presence of phosphonates using nanosilver dispersion as an internal light scattering intensity reference, Colloids Surfaces, 560 (2019) 122–129.