References

  1. P. Bansal, A. Verma, N, Ag co-doped TiO2 mediated modified in-situ dual process (modified photocatalysis and photo-Fenton) in fixed-mode for the degradation of Cephalexin under solar irradiations, Chemosphere, 212 (2018) 611–619.
  2. A. Heidarineko, A. Bagheri Ghomi, P-type semiconducting NiO nanoparticles synthesis and its photocatalytic activity, Iran. J. Catal., 7 (2017) 277–282.
  3. P. Raizada, J. Kumari, P. Shandilya, P. Singh, Kinetics of photocatalytic mineralization of oxytetracycline and ampicillin using activated carbon supported ZnO/ZnWO4 nanocomposite in simulated wastewater, Desal. Wat. Treat., 79 (2017) 204–213.
  4. Z. Amani-Beni, A. Nezamzadeh-Ejhieh, NiO nanoparticles modified carbon paste electrode as a novel sulfasalazine sensor, Anal. Chim. Acta, 1031 (2018) 47–59.
  5. Y. Ji, Y. Yang, L. Zhou, L. Wang, J. Lu, C. Ferronato, J.M. Chovelon, Photodegradation of sulfasalazine and its human metabolites in water by UV and UV/peroxydisulfate processes, Water Res., 133 (2018) 299–309.
  6. J.-J. Li, S.-C. Cai, Z. Xu, X. Chen, J. Chen, H.-P. Jia, J. Chen, Solvothermal syntheses of Bi and Zn co-doped TiO2 with enhanced electron-hole separation and efficient photodegradation of gaseous toluene under visible-light, J. Hazard. Mater., 325 (2017) 261–270.
  7. Z. Ye, J. Li, M. Zhou, H. Wang, Y. Ma, P. Huo, L. Yu, Y. Yan, Well-dispersed nebula-like ZnO/CeO2@HNTs heterostructure for efficient photocatalytic degradation of tetracycline, Chem. Eng. J., 304 (2016) 917–933.
  8. X. Wang, J. Jia, Y. Wang, Combination of photocatalysis with hydrodynamic cavitation for degradation of tetracycline, Chem. Eng. J., 315 (2017) 274–282.
  9. N. Masoudipour, M. Sadeghi, F. Mohammadi-Moghadam, Photo-catalytic inactivation of E. coli using stabilized Ag/S, N-TiO2 nanoparticles by fixed bed photo-reactor under visible light and sunlight, Desal. Wat. Treat., 110 (2018) 109–116.
  10. A. Buthiyappan, A.R. Abdul Aziz, W.M.A.W. Daud, Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents, Rev. Chem. Eng., 32 (2015) 1–47.
  11. V.K. Gupta, A. Fakhri, M. Azad, S. Agarwal, Synthesis and characterization of Ag doped ZnS quantum dots for enhanced photocatalysis of Strychnine as a poison: charge transfer behavior study by electrochemical impedance and timeresolved photoluminescence spectroscopy, J. Colloid Interface Sci., 510 (2018) 95–102.
  12. P. Dhiman, M. Naushad, K.M. Batoo, A. Kumar, G. Sharma, A.A. Ghfar, G. Kumar, M. Singh, FexZn1-xO as a tuneable and efficient photocatalyst for solar powered degradation of bisphenol A from aqueous environment, J. Cleaner Prod., 165 (2017) 1542–1556.
  13. B.A. Ünnü, G. Gündüz, M. Dükkancı, Heterogeneous Fentonlike oxidation of crystal violet using an iron loaded ZSM-5 zeolite, Desal. Wat. Treat., 57 (2016) 11835–11849.
  14. A. Eslami, A. Oghazyan, M. Sarafraz, Magnetically separable MgFe2O4 nanoparticle for efficient catalytic ozonation of organic pollutants, Iran. J. Catal., 8 (2018) 95–102.
  15. Z. Wang, H. Zhang, H. Cao, L. Wang, Z. Wan, Y. Hao, X. Wang, Facile preparation of ZnS/CdS core/shell nanotubes and their enhanced photocatalytic performance, Int. J. Hydrogen Energy, 42 (2017) 17394–17402.
  16. Y. Ma, X. Li, Z. Yang, S. Xu, W. Zhang, Y. Su, N. Hu, W. Lu, J. Feng, Y. Zhang, Morphology control and photocatalysis enhancement by in situ hybridization of cuprous oxide with nitrogen-doped carbon quantum dots, Langmuir, 32 (2016) 9418–9427.
  17. N.L. Subbulekshmi, E. Subramanian, Nano CuO immobilized fly ash zeolite Fenton-like catalyst for oxidative degradation of p-nitrophenol and p-nitroaniline, J. Environ. Chem. Eng., 5 (2017) 1360–1371.
  18. H.R. Pouretedal, M. Fallahgar, F.S. Pourhasan, M. Nasiri, Taguchi optimization of photodegradation of yellow water of trinitrotoluene production catalyzed by nanoparticles TiO2/N under visible light, Iran. J. Catal., 7 (2017) 317–326.
  19. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Facile synthesis of nanocrystalline neodymium zirconate for highly efficient photodegradation of organic dyes, J. Mol. Liq., 243 (2017) 219–226.
  20. N. Sapawe, A.A. Jalil, S. Triwahyono, One-pot electrosynthesis of ZrO2–ZnO/HY nanocomposite for photocatalytic decolorization of various dye-contaminants, Chem. Eng. J., 225 (2013) 254–265.
  21. S. Landi Jr, J. Carneiro, S. Ferdov, A.M. Fonseca, I.C. Neves, M. Ferreira, P. Parpot, O.S.G.P. Soares, M.F.R. Pereira, Photocatalytic degradation of Rhodamine B dye by cotton textile coated with SiO2-TiO2 and SiO2-TiO2-HY composites, J. Photochem. Photobiol., A, 346 (2017) 60–69.
  22. H. Che, G. Che, E. Jiang, C. Liu, H. Dong, C. Li, A novel Z-scheme CdS/Bi3O4Cl heterostructure for photocatalytic degradation of antibiotics: mineralization activity, degradation pathways and mechanism insight, J. Taiwan Inst. Chem. Eng., 91 (2018) 224–234.
  23. Y. Ma, X. Zhu, S. Xu, G. He, L. Yao, N. Hu, Y. Su, J. Feng, Y. Zhang, Z. Yang, Gold nanobipyramid@cuprous oxide jujubelike nanostructures for plasmon-enhanced photocatalytic performance, Appl. Catal., B, 234 (2018) 26–36.
  24. X. Li, Y. Ma, Z. Yang, S. Xu, L. Wei, D. Huang, T. Wang, N. Hu, Y. Zhang, Hierarchical heterostructures based on prickly Ni nanowires/Cu2O nanoparticles with enhanced photocatalytic activity, Dalton Trans., 45 (2016) 7258–7266.
  25. S. Arshadi-Rastabi, J. Moghaddam, M.R. Eskandarian, Synthesis, characterization and stability of Cu2O nanoparticles produced via supersaturation method considering operational parameters effect, J. Ind. Eng. Chem., 22 (2015) 34–40.
  26. W.-Y. Cheng, T.-H. Yu, K.-J. Chao, S.-Y. Lu, Cu2O-decorated CdS nanostructures for high efficiency visible light driven hydrogen production, Int. J. Hydrogen Energy, 38 (2013) 9665–9672.
  27. H. Yang, G. Sun, L. Zhang, Y. Zhang, X. Song, J. Yu, S. Ge, Ultrasensitive photoelectrochemical immunoassay based on CdS@Cu2O co-sensitized porous ZnO nanosheets and promoted by multiwalled carbon nanotubes, Sens. Actuators, B, 234 (2016) 658–666.
  28. L. Wang, W. Wang, Y. Chen, L. Yao, X. Zhao, H. Shi, M. Cao, Y. Liang, Heterogeneous p-n junction CdS/Cu2O nanorod arrays: synthesis and superior visible-light-driven photoelectrochemical performance for hydrogen evolution, ACS Appl. Mater. Interfaces, 10 (2018) 11652–11662.
  29. N. Qutub, B. Masood Pirzada, K. Umar, S. Sabir, Synthesis of CdS nanoparticles using different sulfide ion precursors: formation mechanism and photocatalytic degradation of Acid Blue-29, J. Environ. Chem. Eng., 4 (2016) 808–817.
  30. Z. Zhang, Y. Ren, L. Han, G. Xie, B. Zhong, Mixed-solvothermal synthesis of CdS micro/nanostructures with optical and ferromagnetic properties, Physica E, 92 (2017) 30–35.
  31. D. Fernando, M. Khan, Y. Vasquez, Control of the crystalline phase and morphology of CdS deposited on microstructured surfaces by chemical bath deposition, Mater. Sci. Semicond. Process., 30 (2015) 174–180.
  32. B.S. Rao, B.R. Kumar, V.R. Reddy, T.S. Rao, Preparation and characterization of CdS nanoparticles by chemical coprecipitation technique, Chalcogenide Lett., 8 (2011) 177–185.
  33. P. Rodrgues, N. Muñoz-Aguirre, E. San-Martin Martínez, G. Gonzalez, O. Zelaya, J. Mendoza, Formation of CdS nanoparticles using starch as capping agent, Appl. Surf. Sci., 255 (2008) 740–742.
  34. R. Borah, E. Saikia, S. Jyoti Bora, B. Chetia, Banana pulp extract mediated synthesis of Cu2O nanoparticles: an efficient heterogeneous catalyst for the ipso-hydroxylation of arylboronic acids, Tetrahedron Lett., 58 (2017) 1211–1215.
  35. W. Zhang, Y. Ma, Z. Yang, X. Tang, X. Li, G. He, Y. Cheng, Z. Fang, R. He, Y. Zhang, Analysis of synergistic effect between graphene and octahedral cuprous oxide in cuprous oxidegraphene composites and their photocatalytic application, J. Alloys Compd., 712 (2017) 704–713.
  36. M.M.J. Sadiq, A.S. Nesaraj, Reflux condensation synthesis and characterization of Co3O4 nanoparticles for photocatalytic applications, Iran. J. Catal., 4 (2014) 219–226.
  37. P. Kubelka, F. Munk, Ein Beitrag zur Optik der Farbanstriche, Zeitschrift für technische Physik, 12 (1931) 593–601.
  38. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium, Phys. Status Solidi B, 15 (1996) 627–637.
  39. S. Dianat, Visible light induced photocatalytic degradation of direct red 23 and direct brown 166 by InVO4-TiO2 nanocomposite, Iran. J. Catal., 8 (2018) 121–132.
  40. M. Karimi-Shamsabadi, M. Behpour, A. Kazemi Babaheidari, Z. Saberi, Efficiently enhancing photocatalytic activity of NiO-ZnO doped onto nanozeoliteX by synergistic effects of p-n heterojunction, supporting and zeolite nanoparticles in photo-degradation of Eriochrome Black T and Methyl Orange, J. Photochem. Photobiol., A, 346 (2017) 133–143.
  41. S.G. Ghugal, S.S. Umare, R. Sasikala, A stable, efficient and reusable CdS–SnO2 heterostructured photocatalyst for the mineralization of Acid Violet 7 dye, Appl. Catal., A, 496 (2015) 25–31.
  42. H. Kisch, H. Weiß, Tuning photoelectrochemical and photocatalytic properties through electronic semiconductor–support interaction, Adv. Funct. Mater., 12 (2002) 483–488.
  43. P. Mohammadyari, A. Nezamzadeh-Ejhieh, Supporting of mixed ZnS–NiS semiconductors onto clinoptilolite nanoparticles to improve its activity in photodegradation of 2-nitrotoluene, RSC Adv., 5 (2015) 75300–75310.
  44. D.-L. Guan, C.-G. Niu, X.-J. Wen, H. Guo, C.-H. Deng, G.-M. Zeng, Enhanced Escherichia coli inactivation and oxytetracycline hydrochloride degradation by a Z-scheme silver iodide decorated bismuth vanadate nanocomposite under visible light irradiation, J. Colloid Interface Sci., 512 (2018) 272–281.
  45. J. Lin, L. Wang, C. Sun, Influence factors and kinetic study on photocatalytic degradation of Rhodamine B by Fe-doped TiO2/diatomite composite, Adv. Mater. Res., 535–537 (2012) 2209–2213.
  46. G.V. Morales, E.L. Shan, R. Cornejo, E.M. Farfan Torres, Kinetic studies of the photocatalytic degradation of tartrazine, Lat. Am. Appl. Res., 42 (2012) 45–49.
  47. A. Nezamzadeh-Ejhieh, Z. Ghanbari-Mobarakehi, Heterogeneous photodegradation of 2,4-dichlorophenol using FeO doped onto nano-particles of zeolite P, J. Ind. Eng. Chem., 21 (2015) 668–676.
  48. M. Zarifeh-Alsadat, A. Nezamzadeh-Ejhieh, Removal of phenol content of an industrial wastewater via a heterogeneous photodegradation process using supported FeO onto nanoparticles of Iranian clinoptilolite, Desal. Wat. Treat., 57 (2016) 16483–16494.
  49. S. Dharmraj Khairnar, M. Rajendra Patil, V. Shankar Shrivastava, Hydrothermally synthesized nanocrystalline Nb2O5 and its visible-light photocatalytic activity for the degradation of congo red and methylene blue, Iran. J. Catal., 8 (2018) 143–150.
  50. A. Nezamzadeh-Ejhieh, M. Bahrami, Investigation of the photocatalytic activity of supported ZnO-TiO2 on clinoptilolite nano-particles towards photodegradation of wastewatercontained phenol, Desal. Wat. Treat., 55 (2015) 1096–1104.]
  51. S. Mousavi-Mortazavi, A. Nezamzadeh-Ejhieh, Supported iron oxide onto an Iranian clinoptilolite as a heterogeneous catalyst for photodegradation of furfural in a wastewater sample, Desal. Wat. Treat., 57 (2016) 10802–10814.
  52. P.K. Surolia, R.V. Jasra, Photocatalytic degradation of p-nitrotoluene (PNT) using TiO2-modified silver-exchanged NaY zeolite: kinetic study and identification of mineralization pathway, Desal. Wat. Treat., 57 (2016) 22081–22098.
  53. D.A. Aljuboury, P. Palaniandy, H.B. Abdul Aziz, S. Feroz, S.S. Abu Amr, Evaluating photo-degradation of COD and TOC in petroleum refinery wastewater by using TiO2/ZnO photocatalyst, Water Sci. Technol., 74 (2016) 1312–1325.
  54. A. Khataee, F. Salahpour, M. Fathinia, B. Seyyedi, B. Vahid, Iron rich laterite soil with mesoporous structure for heterogeneous Fenton-like degradation of an azo dye under visible light, J. Ind. Eng. Chem., 26 (2015) 129–135.
  55. A. Nandi, I.B. Chatterjee, Scavenging of superoxide radical by ascorbic acid, J. Biosci., 11 (1987) 435–441.
  56. P. Wardman, Reduction potentials of one-electron couples involving free-radicals in aqueous solution, J. Phys. Chem. Ref. Data, 18 (1989) 1637–1755.
  57. J. De Laat, G. Truong Le, B. Legube, A comparative study of the effects of chloride, sulfate, and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe(II)/H2O2 and Fe(III)/H2O2, Chemosphere, 55 (2004) 715–723.
  58. D.A. Armstronga, R.E. Huie, S. Lymar, W.H. Koppenol, G. Merényi, P. Neta, D.M. Stanbury, S. Steenken, P. Wardman, Standard electrode potentials involving radicals in aqueous solution: inorganic radicals, Bioinorg. React. Mech., 9 (2013) 59–61.
  59. B.A. Wols, C.H.M. Hofman-Caris, Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water, Water Res., 46 (2012) 2815–2827.
  60. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution, J. Phys. Chem. Ref. Data, 17 (1988) 513–886.
  61. R.M. Buoro, V.C. Diculescu, I.C. Lopes, S.H.P. Serrano, A.M. Oliveira-Brett, Electrochemical oxidation of sulfasalazine at a glassy carbon electrode, Electroanalysis, 26 (2014) 924–930.