References
  -  World Health Organization (WHO), UNICEF, Global Water
    Supply and Sanitation Assessment 2000 Report, WHO, Geneva,
    Switzerland, 2000. 
-  A.T. Wolf, Water and human security, J. Contemp. Water Res.
    Educ., 118 (2001) 29–37. 
-  World Health Organization (WHO), Guidelines for Drinking
    Water Quality, Surveillance and Control of Community
    Supplies, Vol. 3, 2nd ed., WHO, Geneva, 1997. 
-  S. Yang, J.-S. Gu, H.-Y. Yu, J. Zhou, S.-F. Li, X.-M. Wu,
    L. Wang, Polypropylene membrane surface modification
	  by RAFT grafting polymerization and TiO2 photocatalysts
    immobilization for phenol decomposition in a photocatalytic
    membrane reactor, Sep. Purif. Technol., 83 (2011) 157–165. 
-  R. Mu, Z. Xu, L. Li, Y. Shao, H. Wan, S. Zheng, On the
    photocatalytic properties of elongated TiO2 nanoparticles for
    phenol degradation and Cr(VI) reduction, J. Hazard. Mater.,
    176 (2010) 495–502. 
-  N.M. Mahmoodi, M. Arami, N.Y. Limaee, Photocatalytic
    degradation of triazinic ring-containing azo dye (Reactive
    Red 198) by using immobilized TiO2 photoreactor: bench scale
    study, J. Hazard. Mater., 133 (2006) 113–118. 
-  Y. Zhang, D. Wang, G. Zhang, Photocatalytic degradation of
    organic contaminants by TiO2/sepiolite composites prepared
    at low temperature, Chem. Eng. J., 173 (2011) 1–10. 
-  H.A. Le, L.T. Linh, S. Chin, J. Jurng, Photocatalytic degradation
    of methylene blue by a combination of TiO2-anatase and coconut
    shell activated carbon, Powder Technol., 225 (2012) 167–175. 
-  S.-y. Lu, D. Wu, Q.-l. Wang, J. Yan, A.G. Buekens, K.-f. Cen,
    Photocatalytic decomposition on nano-TiO2: destruction
    of chloroaromatic compounds, Chemosphere, 82 (2011)
    1215–1224. 
-  H. Lee, J. Choi, S. Lee, S.-T. Yun, C. Lee, J. Lee, Kinetic
    enhancement in Photocatalytic oxidation of organic compounds
    by WO3 in the presence of Fenton-like reagent, Appl. Catal., B,
    138–139 (2013) 311–317. 
-  X. Gao, X. Su, C. Yang, F. Xiao, J. Wang, X. Cao, S. Wang, L. Zhang,
    Hydrothermal synthesis of WO3 nanoplates as highly sensitive
    cyclohexene sensor and high-efficiency MB photocatalyst, Sens.
    Actuators, B, 181 (2013) 537–543. 
-  Z. Miao, S. Tao, Y. Wang, Y. Yu, C. Meng, Y. An, Hierarchically
    porous silica as an efficient catalyst carrier for high performance
    vis-light assisted Fenton degradation, Microporous Mesoporous
    Mater., 176 (2013) 178–185. 
-  Y.J. Zhang, L.C. Liu, L.L. Ni, B.L. Wang, A facile and low-cost
    synthesis of granulated blast furnace slag-based cementitious
    material coupled with Fe2O3 catalyst for treatment of dye
    wastewater, Appl. Catal., B, 138–139 (2013) 9–16. 
-  V.K. Gupta, D. Pathania, S. Agarwal, P. Singh, Adsorptional
    photocatalytic degradation of methylene blue onto pectin-CuS
    nanocomposite under solar light, J. Hazard. Mater., 243 (2012)
    179–186. 
-  S. Liu, X. Wang, W. Zhao, K. Wang, H. Sang, Z. He, Synthesis,
    characterization and enhanced photocatalytic performance of
    Ag2S-coupled ZnO/Zn Score/shell nanorods, J. Alloys Compd.,
    568 (2013) 84–91. 
-  S.U.M. Khan, M. Al-Shahry, W.B. Ingler Jr., Efficient photochemical
    water splitting by a chemically modified n-TiO2,
    Science, 297 (2002) 2243–2245. 
-  Y.A. Shaban, S.U.M. Khan, Visible light active carbon
    modified n-TiO2 for efficient hydrogen production by photoelectrochemical
    splitting of water, Int. J. Hydrogen Energy,
    33 (2008) 1118–1126 
-  C. Xu, R. Killmeyer, M.L. Gray, S.U.M. Khan, Photocatalytic
    effect of carbon-modified n-TiO2 nanoparticles under visible
    light illumination, Appl. Catal., B, 64 (2006) 312–317. 
-  Y.A. Shaban, A.A. El Maradny, R.K. Al Farawati, Photocatalytic
    reduction of nitrate in seawater using C/TiO2 nanoparticles,
    J. Photochem. Photobiol., A, 328 (2016) 114–121. 
-  Y.A. Shaban, M.A. El Sayed, A.A. El Maradny, R.Kh. Al
    Farawati, M.I. Al Zobidi, Photocatalytic degradation of phenol
    in natural seawater using visible light active carbon modified
    (CM)-n-TiO2 nanoparticles under UV light and natural sunlight
    illuminations, Chemosphere, 91 (2013) 307–313. 
-  M. Anpo, H. Yamashita, Y. Ichihashi, Y. Fujii, M. Honda,
    Photocatalytic reduction of CO2 with H2O on titanium oxides
    anchored within micropores of zeolites: effects of the structure
    of the active sites and the addition of Pt, J. Phys. Chem. B,
    101 (1997) 2632–2636. 
-  H. Yamashita, H. Nishiguchi, N. Kamada, M. Anpo, Y. Teraoka,
    H. Hatano, M. Sciavello, Photocatalytic reduction of CO2
    with H2O on TiO2 and Cu/TiO2 catalysts, Res. Chem. Intermed.,
    20 (1994) 815–823. 
-  K. Adachi, K. Ohta, T. Mizuno, Photocatalytic reduction of
    carbon dioxide to hydrocarbon using copper-loaded titanium
    dioxide, Sol. Energy, 53 (1994) 187–190. 
-  N. Sasirekha, S.J.S. Basha, K. Shanthi, Photocatalytic performance
    of Ru doped anatase mounted on silica for reduction
    of carbon dioxide, Appl. Catal., B, 62 (2006) 169–180. 
-  M. Tahir, N.S. Amin, Indium-doped TiO2 nanoparticles for
    photocatalytic CO2 reduction with H2O vapors to CH4, Appl.
    Catal., B, 162 (2015) 98–109. 
-  M.R. Uddin, M.R. Khan, M.W. Rahman, A. Yousuf, C.K. Cheng,
    Photocatalytic reduction of CO2 into methanol over CuFe2O4/TiO2 under visible light irradiation, React. Kinet. Mech. Catal.,
    116 (2015) 589–604. 
-  P. Monash, G. Pugazhenthi, Development of ceramic supports
    derived from low‐cost raw materials for membrane applications
    and its optimization based on sintering temperature, Int. J.
    Appl. Ceram. Technol., 8 (2011) 227–238. 
-  M. Amanipour, A. Safekordi, E.G. Babakhani, A. Zamaniyan,
    M. Heidari, Effect of synthesis conditions on performance
    of a hydrogen selective nano-composite ceramic membrane,
    Int. J. Hydrogen Energy, 37 (2012) 15359–15366. 
-  I. Erdem, M. Ciftcioglu, S. Harsa, Separation of whey components
    by using ceramic composite membranes, Desalination,
    189 (2006) 87–91. 
-  A. Huang, Y.S. Lin, W. Yang, Synthesis and properties of
    A-type zeolite membranes by secondary growth method with
    vacuum seeding, J. Membr. Sci., 245 (2004) 41–51. 
-  Y. Li, H. Chen, J. Liu, W. Yang, Microwave synthesis of LTA zeolite
    membranes without seeding, J. Membr. Sci., 277 (2006) 230–239. 
-  R. Sari, Z. Yaakob, M. Ismail, W.R.W. Daud, L. Hakim,
    Palladium–alumina composite membrane for hydrogen
    separator fabricated by combined sol–gel, and electroless plating
    technique, Ceram. Int., 39 (2013) 3211–3219. 
-  H. Choi, E. Stathatos, D.D. Dionysiou, Sol-gel preparation
    of mesoporous photocatalytic TiO2 films and TiO2/Al2O3
    composite membranes for environmental applications, Appl.
    Catal., B, 63 (2006) 60–67. 
-  M.A. Anderson, M.J. Gieselmann, Q. Xu, Titania and alumina
    ceramic membranes, J. Memb. Sci., 39 (1988) 243–258. 
-  K. Grasshoff, K. Kremling, M. Erhardt, Methods of Seawater
    Analysis, Welly-VCH, Weinheim, New York, 1999. 
-  J.D. Strickland, T.R. Parsons, A Practical Handbook of Seawater
    Analysis, Fisheries Research Board of Canada, Ottawa, 1972. 
-  American Public Health Association (APHA), Standard Methods
    for Examination of Water and Wastewater, 14th ed., New York,
    1976. 
-  V.K.K. Tangirala, H. Gómez-Pozos, V. Rodríguez-Lugo, M.D.L.L.
    Olvera, A study of the CO sensing responses of Cu-, Pt- and
    Pd-activated SnO2 sensors: effect of precipitation agents,
    Dopants and Doping Methods, Sensors, 17 (2017) 1011–1035. 
-  P. Kubelka, New contributions to the optics of intensely lightscattering
    materials. Part I., J. Opt. Soc. Am., 38 (1948) 448–457. 
-  T. Tauc, R. Grigorovici, A. Vancu, Optical properties and
    electronic structure of amorphous germanium, Phys. Status
    Solidi B, 15 (1966) S627–637. 
-  Y. Nakano, T. Morikawa, T. Ohwaki, Y. Taga, Electrical characterization
    of band gap states in C-doped TiO2 films, Appl. Phys.
    Lett., 87 (2005), doi.org/10.1063/1.2008376. 
-  Y.G. Tao, Y.Q. Xu, J. Pan, H. Gu, C.Y. Qin, P. Zhou, Glycine
    assisted synthesis of flower-like TiO2 hierarchical spheres and
    its application in photocatalysis, Mater. Sci. Eng., B, 177 (2012)
    1664–1671. 
-  G. Zhang, Y.C. Zhang, M. Nadagouda, C. Han, K. O’Shea,
    S.M. El-Sheikh, A.A. Ismail, D.D. Dionysiou, Visible lightsensitized
    S, N and C co-doped polymorphic TiO2 for
    photocatalytic destruction of microcystin-LR, Appl. Catal., B,
    144 (2014) 614–621. 
-  V. Trevisan, A. Olivo, F. Pinna, M. Signoretto, F. Vindigni,
    G. Cerrato, C.L. Bianchi, C-N/TiO2 photocatalysts: effect of
    co-doping on the catalytic performance under visible light,
    Appl. Catal., B, 160 (2014) 152–160. 
-  S.M. El-Sheikh, G. Zhang, H.M. El-Hosainy, A.A. Ismail,
    K.E. O’Shea, P. Falaras, A.G. Kontos, D.D. Dionysiou, High
    performance sulfur, nitrogen and carbon doped mesoporous
    anatase–brookite TiO2 photocatalyst for the removal of microcystin-
    LR under visible light irradiation, J. Hazard. Mater.,
    280 (2014) 723–733. 
-  X.F. Lei, X.X. Xue, H. Yang, C. Chen, X. Li, M.C. Niu, X.Y. Gao,
    Y.T. Yang, Effect of calcination temperature on the structure
    and visible-light photocatalytic activities of (N, S and C)
    co-doped TiO2 nano-materials, Appl. Surf. Sci., 332 (2015)
    172–180. 
-  V. Etacheri, M. Seery, S. Hinder, G. Michlits, S. Pillai, A highly
	  efficient TiO2–xCx nano-heterojunction photocatalyst for visible
    light induced antibacterial applications, ACS Appl. Mater.
    Interfaces, 5 (2013) 1663–1672. 
-  X. Guo, D. Mao, G. Lu, S. Wang, G. Wu, The influence of La
    doping on the catalytic behavior of Cu/ZrO2 for methanol
    synthesis from CO2 hydrogenation, J. Mol. Catal. A: Chem.,
    345 (2011) 60–68. 
-  L.C. Wang, Q. Liu, M. Chen, Y.M. Liu, Y. Cao, H.Y. He, K.N. Fan,
    Structural evolution and catalytic properties of nanostructured
    Cu/ZrO2 catalysts prepared by oxalate gel-coprecipitation
    technique, J. Phys. Chem. C, 111 (2007) 16549–16557. 
-  WHO Expert Committee on Biological Standardization, Meeting
    and World Health Organization, WHO Expert Committee on
    Biological Standardization: 63rd Report, Vol. 980, World Health
    Organization, Geneva, Switzerland, 2013. 
-  F. Shahrezaei, Y. Mansouri, A.A.L. Zinatizadeh, A. Akhbari,
    Photocatalytic degradation of aniline using TiO2 nanoparticles
    in a vertical circulating photocatalytic reactor, Int. J. Photoenergy,
    2012 (2012) 8 p, doi.org/10.1155/2012/430638. 
-  S.W. Nixon, Physical energy inputs and the comparative
    ecology of lake and marine ecosystems, Limnol. Oceanogr.,
    33 (1988) 1005–1025. 
-  S.P. Baden, The cryptofauna of Zostera marina (L.): abundance,
    biomass and population dynamics, Netherlands J. Sea Res.,
    27 (1990) 81–92. 
-  R.G. Wetzel, Limnology: Lake and River Ecosystems, 3rd ed.,
    Academic Press, San Diego, CA, 2001. 
-  EPA (2012), Conductivity in Water: Monitoring and Assessment,
    2018. Available at: http://water.epa.gov/type/rsl/monitoring/vms59.cfm. 
-  R.L. Miller, W.L. Bradford, N.E. Peters, Specific Conductance:
    Theoretical Considerations and Application to Analytical
    Quality Control, In: U.S. Geological Survey Water-Supply Paper,
    1988, Available at: http://pubs.usgs.gov/wsp/2311/report.pdf.
	  (Visiting date: 10.10.2018).