References

  1. S. Yang, F. Yang, Z. Fu, T. Wang, R. Lei, Simultaneous nitrogen and phosphorus removal by a novel sequencing batch moving bed membrane bioreactor for wastewater treatment, J. Hazard. Mater., 175 (2010) 551–557.
  2. C. Visvanathan, R.B. Aim, K. Parameshwaran, Membrane separation bioreactors for wastewater treatment, Crit. Rev. Environ. Sci. Technol., 30(1) (2000) 1–48.
  3. D. Mulkerrins, A. Dobson, E. Colleran, Parameters affecting biological phosphate removal from waste waters, Environ. Int., 30(2) (2004) 249–259.
  4. D. Mulkerrins, C. Jordan, S. McMahon, E. Colleran, Evaluation of the parameters affecting nitrogen and phosphorus removal in anaerobic/anoxic/oxic(A/A/O) biological nutrient removal systems, J. Chem. Technol. Biotechnol., 75 (2000) 261–268.
  5. M. Kraume, U. Bracklow, M. Vocks, A. Drews, Nutrient removal in MBRs for municipal wastewater treatment, Water Sci. Technol., 51(6–7) (2005) 391–402.
  6. Metcalf and Eddy, Wastewater Engineering: Treatment and Reuse, Fourth Edition, McGraw Hill Inc., New York. 2003.
  7. USEPA, Nutrient Control Design Manual. State of Technology Review Report; EPA/600/R-09/012; EPA: Cincinatti, Ohio. 2009.
  8. W.T. Liu, K. Nakamura, T. Matsuo, T. Mino, Internal energy based competition between polyphosphate- and glycogen-accumulating bacteria in biological phosphorus removal reactors–Effect of P/C feeding ratio, Water Res., 31(6) (1997) 1430–1438.
  9. S. Jeyanayagam, True Confessions of the Biological Nutrient Removal Process. Florida Water Resources, 2005, pp. 37–46.
  10. Y. Liu, Y. Chen, Q. Zhou, Effect of initial pH control on enhanced biological phosphorus removal from wastewater containing acetic and propionic acids, Chemosphere, 66 (2007) 123–129.
  11. J.B. Li, J.W. Zhu, M.S. Zheng, Morphologies and properties of poly (phthalazinone ether sulfone ketone) matrix ultra filtration membranes with entrapped TiO2 nanoparticles, J. Appl. Polym. Sci., 103 (2007) 3623–3629.
  12. Q.F. Alsalhy, F.H. Al-Ani, A.E. Al-Najar, S. Jabuk, A study of the effect of embedding ZnO-NPs on PVC membrane performance use in actual hospital wastewater treatment by membrane bioreactor, Chem. Eng. Process. - Process Intensif., 130 (2018) 262–274.
  13. Q.F. Alsalhy, F.H. Al-Ani, A.E. Al-Najar, A new Sponge-GAC Sponge membrane module for submerged membrane bioreactor use in hospital wastewater treatment, Biochem. Eng. J., 133 (2018) 130–139.
  14. E.W. Rice, R.B. Baird, A.D. Eaton, L.S. Clesceri, Standard methods for the examination of water and wastewater, 22nd ed., American Public Health Association (APHA), American Water Works Association, Water Environment Federation, 2012.
  15. N. Maximous, G. Nakhla, W. Wan, K. Wong, Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration, J. Membr. Sci., 341 (2009) 67–75.
  16. J. Huang, K. Zhang, K. Wang, Z. Xie, B. Ladewig, H. Wang, Fabrication of polyethersulfone-mesoporous silica nanocomposite ultra filtration membranes with anti-fouling properties, J. Membr. Sci., 423–424 (2012) 362–370.
  17. H. Rabiee, M.H.D.A. Farahani, V. Vatanpour, Preparation and characterization of emulsion poly(vinyl chloride) (EPVC)/TiO2 nanocomposite ultra filtration membrane, J. Membr. Sci., 472 (2014) 185–193.
  18. Y. Yang, H. Zhang, P. Wang, Q. Zheng, J. Li, The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane, J. Membr. Sci., 288 (2007) 231–238.
  19. N.M. Majlesi, A. Yazdanbakhsh, Study on wastewater treatment systems in hospitals of Iran. Iran, J. Environ. Health Sci. Eng., 5(3) (2008) 211–215.
  20. Sh. Sarafraz, M. Khani, K. Yaghmaeian, Quality and quantity survey of hospital waste waters in Hormozgan province. Iran, J. Environ. Health Sci. Eng., 4(1) (2006) 43–50.
  21. Katsou, E. Malamis, S. Loizidou, Performance of a membrane bioreactor used for the treatment of wastewater contaminated with heavy metals, Bioresour. Technol., 102(6) (2011) 4325–4332.
  22. K. Yamamoto, M. Hiasa, T. Mahmood, T. Matsuo, Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank, Water Sci. Technol., 21(4–5) (1989) 43–54.
  23. Y.T. Ahn, S.T. Kang, S.R. Chae, J.L. Lim, S.H. Lee, H.S. Shin, Effect of internal recycle rate on the high-strength nitrogen wastewater treatment in the combined UBF/MBR system, Water Sci. Technol., 51 (2005) 241–247.
  24. W. Chen, D. Wu, N.W. Zhu, Enhanced ammonia removal and nitrification rate of A/A/O-MBR combined process, J. Civil Architec. Environ. Eng., 32(4) (2010) 90–95.
  25. S. Puig, M. Coma, H. Monclús, M.C.M. Van Loosdrecht, J. Colprim, M.D. Balaguer, Selection between alcohols and volatile fatty acids as external carbon sources for EBPR, Water Res., 42(3) (2008) 557–566.
  26. H. Monclús, J. Sipma, G. Ferrero, J. Comas, I. Rodriguez-Roda, Optimization of biological nutrient removal in a pilot plant UCT-MBR treating municipal wastewater during start-up, Desalination, 250 (2010) 592–597.
  27. X. Zheng, R. Wu, Y. Chen, Effects of ZnO nanoparticles on wastewater bio-logical nitrogen and phosphorus removal, Environ. Sci. Technol., 45(7) (2011) 2826–2832.