References

  1. C.F. Carolin, P.S. Kumar, A. Saravanan, G.J. Joshiba, Mu. Naushad, Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review, J. Environ. Chem. Eng., 5 (2017) 2782–2799.
  2. A. Calzadilla, K. Rehdanz, R.S.J. Tol, Water scarcity and the impact of improved irrigation management: a computable general equilibrium analysis, Agric. Econ., 42 (2011) 305–323.
  3. M. Falkenmark, J. Rockström, Balancing Water for Humans and Nature: The New Approach in Ecohydrology, Earthscan, London, Sterling, VA, 2004.
  4. I. Enniya, L. Rghioui, A. Jourani, Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels, Sustainable Chem. Pharm., 7 (2018) 9–16.
  5. D.E. Pehlivan, Production of Biosorbents from Agricultural by-product and theirs Adsorption Characteristics for Metal ions, (n.d.) 10, Faculty of Engineering-Architecture, Department of Chemical Engineering, Selçuk University, Campus, 42079 Konya, Turkey.
  6. P.R. Choudhury, S. Majumdar, G.C. Sahoo, S. Saha, P. Mondal, High pressure ultrafiltration CuO/hydroxyethyl cellulose composite ceramic membrane for separation of Cr(VI) and Pb(II) from contaminated water, Chem. Eng. J., 336 (2018) 570–578.
  7. P.R. Choudhury, S. Majumdar, S. Sarkar, B. Kundu, G.C. Sahoo, Performance investigation of Pb(II) removal by synthesized hydroxyapatite based ceramic ultrafiltration membrane: bench scale study, Chem. Eng. J., 355 (2019) 510–519.
  8. S.A. Al-Saydeh, M.H. El-Naas, S.J. Zaidi, Copper removal from industrial wastewater: a comprehensive review, J. Ind. Eng. Chem., 56 (2017) 35–44.
  9. R. Jobby, P. Jha, A.K. Yadav, N. Desai, Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: a comprehensive review, Chemosphere, 207 (2018) 255–266.
  10. N. Fiol, I. Villaescusa, M. Martnez, N. Miralles, J. Poch, J. Serarols, Biosorption of Cr(VI) using low cost sorbents, Environ. Chem. Lett., 1 (2003) 135–139.
  11. L.K. Cabatingan, R.C. Agapay, J.L.L. Rakels, M. Ottens, L.A.M. van der Wielen, Potential of biosorption for the recovery of chromate in industrial wastewaters, Ind. Eng. Chem. Res., 40 (2001) 2302–2309.
  12. S.E. Fendorf, Surface reactions of chromium in soils and waters, Geoderma, 67 (1995) 55–71.
  13. P. Wexler, B.D. Anderson, Eds., Encyclopedia of Toxicology, 3rd ed., Elsevier/AP, Academic Press is an imprint of Elsevier, Amsterdam, Boston, 2014.
  14. M. Ghalit, E. Gharibi, J.-D. Taupin, A. Lamhamdi, Mineralization process of spring in carbonate coastal aquifer in the massif Bokkoya (Central Rif, Morocco), Moroccan J. Chem., 5 (2017) 15.
  15. O.N. Kononova, G.L. Bryuzgina, O.V. Apchitaeva, Y.S. Kononov, Ion exchange recovery of chromium (VI) and manganese (II) from aqueous solutions, Arabian J. Chem., (2015), doi:10.1016/j.arabjc.2015.05.021 (In Press).
  16. A. Sharma, K.G. Bhattacharyya, Adsorption of chromium (VI) on Azadirachta indica (neem) leaf powder, Adsorption, 10 (2005) 327–338.
  17. M. Giagnorio, B. Ruffino, D. Grinic, S. Steffenino, L. Meucci, M.C. Zanetti, A. Tiraferri, Achieving low concentrations of chromium in drinking water by nanofiltration: membrane performance and selection, Environ. Sci. Pollut. Res., 25 (2018) 25294–25305.
  18. M. Giagnorio, S. Steffenino, L. Meucci, M.C. Zanetti, A. Tiraferri, Design and performance of a nanofiltration plant for the removal of chromium aimed at the production of safe potable water, J. Environ. Chem. Eng., 6 (2018) 4467–4475.
  19. T. Chaabane, S. Taha, M. Taleb Ahmed, R. Maachi, G. Dorange, Removal of copper from industrial effluent using a spiral wound module — film theory and hydrodynamic approach, Desalination, 200 (2006) 403–405.
  20. B. Al-Rashdi, C. Somerfield, N. Hilal, Heavy metals removal using adsorption and nanofiltration techniques, Sep. Purif. Rev., 40 (2011) 209–259.
  21. M.A. Barakat, New trends in removing heavy metals from industrial wastewater, Arabian J. Chem., 4 (2011) 361–377.
  22. C. Cojocaru, G. Zakrzewska-Trznadel, Response surface modeling and optimization of copper removal from aqua solutions using polymer assisted ultrafiltration, J. Membr. Sci., 298 (2007) 56–70.
  23. D. Jellouli Ennigrou, M. Ben Sik Ali, M. Dhahbi, Copper and Zinc removal from aqueous solutions by polyacrylic acid assisted-ultrafiltration, Desalination, 343 (2014) 82–87.
  24. E. Eren, Removal of copper ions by modified Unye clay, Turkey, J. Hazard. Mater., 159 (2008) 235–244.
  25. S.H. Frisbie, E.J. Mitchell, H. Dustin, D.M. Maynard, B. Sarkar, World Health Organization discontinues its drinking-water guideline for manganese, Environ. Health Perspect., 120 (2012) 775–778.
  26. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  27. K.K. Krishnani, S. Srinives, B.C. Mohapatra, V.M. Boddu, J. Hao, X. Meng, A. Mulchandani, Hexavalent chromium removal mechanism using conducting polymers, J. Hazard. Mater., 252–253 (2013) 99–106.
  28. S. Barredo-Damas, M.I. Alcaina-Miranda, M.I. Iborra-Clar, J.A. Mendoza-Roca, Application of tubular ceramic ultrafiltration membranes for the treatment of integrated textile wastewaters, Chem. Eng. J., 192 (2012) 211–218.
  29. Y. Sang, Q. Gu, T. Sun, F. Li, C. Liang, Filtration by a novel nanofiber membrane and alumina adsorption to remove copper( II) from groundwater, J. Hazard. Mater., 153 (2008) 860–866.
  30. A.G. Yavuz, E. Dincturk-Atalay, A. Uygun, F. Gode, E. Aslan, A comparison study of adsorption of Cr(VI) from aqueous solutions onto alkyl-substituted polyaniline/chitosan composites, Desalination, 1–3 (2011) 325–331.
  31. P. Chowdhury, P. Mondal, K. Roy, Synthesis of polyaniline nanoparticle grafted silica gel and study of its Cr(VI) binding property, J. Appl. Polym. Sci., 119 (2011) 823–829.
  32. A. Xie, L. Ji, S. Luo, Z. Wang, Y. Xu, Y. Kong, Synthesis, characterization of poly(m-phenylenediamine)/palygorskite and its unusual and reactive adsorbability to chromium(VI), New J. Chem., 38 (2014) 777–783.
  33. M. Taleb Ahmed, S. Taha, T. Chaabane, J. Cabon, R. Maachi, G. Dorange, Treatment of the tannery effluents from a plant near Algiers by nanofiltration (NF): experimental results and modeling, Desalination, 165 (2004) 155–160.
  34. J. Tanninen, S. Platt, A. Weis, M. Nyström, Long-term acid resistance and selectivity of NF membranes in very acidic conditions, J. Membr. Sci., 240 (2004) 11–18.
  35. S.M. Samaei, S. Gato-Trinidad, A. Altaee, The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters – a review, Sep. Purif. Technol., 200 (2018) 198–220.
  36. C. Covarrubias, R. García, R. Arriagada, J. Yánez, H. Ramanan, Z. Lai, M. Tsapatsis, Removal of trivalent chromium contaminant from aqueous media using FAU-type zeolite membranes, J. Membr. Sci., 312 (2008) 163–173.
  37. G. Pugazhenthi, S. Sachan, N. Kishore, A. Kumar, Separation of chromium (VI) using modified ultrafiltration charged carbon membrane and its mathematical modeling, J. Membr. Sci., 254 (2005) 229–239.
  38. A. Boularbah, C. Schwartz, G. Bitton, W. Aboudrar, A. Ouhammou, J.L. Morel, Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants, Chemosphere, 63 (2006) 811–817.
  39. M. Maanan, M. Saddik, M. Maanan, M. Chaibi, O. Assobhei, B. Zourarah, Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco, Ecol. Indic., 48 (2015) 616–626.
  40. M. Maanan, Heavy metal concentrations in marine molluscs from the Moroccan coastal region, Environ. Pollut., 153 (2008) 176–183.
  41. M. Maanan, B. Zourarah, C. Carruesco, A. Aajjane, J. Naud, The distribution of heavy metals in the Sidi Moussa lagoon sediments (Atlantic Moroccan Coast), J. Afr. Earth. Sci., 39 (2004) 473–483.
  42. M. Breida, S.A. Younssi, A. Bouazizi, B. Achiou, M. Ouammou, M. El Rhazi, Nitrate removal from aqueous solutions by γ-Al2O3 ultrafiltration membranes, Heliyon, 4 (2018) e00498.
  43. D.L. Oatley, L. Llenas, R. Pérez, P.M. Williams, X. Martínez-Lladó, M. Rovira, Review of the dielectric properties of nanofiltration membranes and verification of the single oriented layer approximation, Adv. Colloid Interface Sci., 173 (2012) 1–11.
  44. M. Pontié, C. Diawara, A. Lhassani, H. Dach, M. Rumeau, H. Buisson, J.C. Schrotter, Chapter 2, Water Defluoridation Processes: A Review, Application: Nanofiltration (NF) for Future Large-Scale Pilot Plants, Fluorine and the Environment, Agrochemicals, Archaeology, Green Chemistry & Water, Vol. 2, Advances in Fluorine Science, 2006, pp. 49–80.
  45. ISO 11083:1994, ISO, (n.d.). Available at: http://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/01/90/19070.
  46. ISO 6059:1984, ISO. (n.d.). Available at: http://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/01/22/12258.
  47. ISO 7890-1:1986, ISO. (n.d.). Available at: http://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/01/48/14840.
  48. T. Ahmad, C. Guria, A. Mandal, Synthesis, characterization and performance studies of mixed-matrix poly(vinyl chloride)-bentonite ultrafiltration membrane for the treatment of saline oily wastewater, Process Saf. Environ. Prot., 116 (2018) 703–717.
  49. S. Bandini, C. Mazzoni, Modelling the amphoteric behaviour of polyamide nanofiltration membranes, Desalination, 184 (2005) 327–336.
  50. L. Bruni, S. Bandini, The role of the electrolyte on the mechanism of charge formation in polyamide nanofiltration membranes, J. Membr. Sci., 308 (2008) 136–151.
  51. M.K. Aroua, F.M. Zuki, N.M. Sulaiman, Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration, J. Hazard. Mater., 147 (2007) 752–758.
  52. J. Sánchez, B.L. Rivas, Cationic hydrophilic polymers coupled to ultrafiltration membranes to remove chromium (VI) from aqueous solution, Desalination, 279 (2011) 338–343.
  53. M. Muthukrishnan, B.K. Guha, Effect of pH on rejection of hexavalent chromium by nanofiltration, Desalination, 219 (2008) 171–178.
  54. A. Tiwari, D. Pal, O. Sahu, Recovery of copper from synthetic solution by efficient technology: membrane separation with response surface methodology, Resour.-Effic. Technol., 3 (2017) 37–45.
  55. S. Dubey, S.N. Upadhyay, Y.C. Sharma, Optimization of removal of Cr by γ-alumina nano-adsorbent using response surface methodology, Ecol. Eng., 97 (2016) 272–283.
  56. W. Motzer, Chemistry, Geochemistry, and Geology of Chromium and Chromium Compounds, J. Guertin, C. Avakian, J. Jacobs, Eds., Chromium(VI) Handbook, CRC Press, 2004, pp. 23–91.
  57. A. Hafiane, D. Lemordant, M. Dhahbi, Removal of hexavalent chromium by nanofiltration, Desalination, 130 (2000) 305–312.
  58. N.K. Lazaridis, M. Jekel, A.I. Zouboulis, Removal of Cr(VI), Mo(VI), and V(V) ions from single metal aqueous solutions by sorption or nanofiltration, Sep. Sci. Technol., 38 (2003) 2201–2219.
  59. B.A.M. Al-Rashdi, D.J. Johnson, N. Hilal, Removal of heavy metal ions by nanofiltration, Desalination, 315 (2013) 2–17.
  60. H. Ozaki, K. Sharma, W. Saktaywin, Performance of an ultralow-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters, Desalination, 144 (2002) 287–294.
  61. K. Mehiguene, Y. Garba, S. Taha, N. Gondrexon, G. Dorange, Influence of operating conditions on the retention of copper and cadmium in aqueous solutions by nanofiltration: experimental results and modelling, Sep. Purif. Technol., 15 (1999) 181–187.
  62. A.K. Basumatary, R. Vinoth Kumar, K. Pakshirajan, G. Pugazhenthi, Removal of trivalent metal ions from aqueous solution via cross-flow ultrafiltration system using zeolite membranes, J. Water Reuse Desal., 7 (2017) 66–76.
  63. L. Li, J. Dong, T. Nenoff, Transport of water and alkali metal ions through MFI zeolite membranes during reverse osmosis, Sep. Purif. Technol., 53 (2007) 42–48.
  64. D. Vasanth, G. Pugazhenthi, R. Uppaluri, Biomass assisted microfiltration of chromium(VI) using Baker’s yeast by ceramic membrane prepared from low cost raw materials, Desalination, 285 (2012) 239–244.
  65. D. Vasanth, R. Uppaluri, G. Pugazhenthi, Influence of sintering temperature on the properties of porous ceramic support prepared by uniaxial dry compaction method using low-cost raw materials for membrane applications, Sep. Sci. Technol., 46 (2011) 1241–1249.
  66. X. Bernat, A. Pihlajamäki, A. Fortuny, C. Bengoa, F. Stüber, A. Fabregat, M. Nyström, J. Font, Non-enhanced ultrafiltration of iron(III) with commercial ceramic membranes, J. Membr. Sci., 334 (2009) 129–137.
  67. Y. Ku, S. Chen, W. Wang, Effect of solution composition on the removal of copper ions by nanofiltration, Sep. Purif. Technol., 43 (2005) 135–142.
  68. Y. Sato, M. Kang, T. Kamei, Y. Magara, Performance of nanofiltration for arsenic removal, Water Res., 36 (2002) 3371–3377.
  69. S. Alami-Younssi, A. Larbot, M. Persin, J. Sarrazin, L. Cot, Gamma alumina nanofiltration membrane: application to the rejection of metallic cations, J. Membr. Sci., 91 (1994) 87–95.
  70. N. Saffaj, H. Loukili, S.A. Younssi, A. Albizane, M. Bouhria, M. Persin, A. Larbot, Filtration of solution containing heavy metals and dyes by means of ultrafiltration membranes deposited on support made of Moroccan clay, Desalination, 168 (2004) 301–306.
  71. C.-V. Gherasim, P. Mikulášek, Influence of operating variables on the removal of heavy metal ions from aqueous solutions by nanofiltration, Desalination, 343 (2014) 67–74.
  72. M.R. Muthumareeswaran, M. Alhoshan, G.P. Agarwal, Ultrafiltration membrane for effective removal of chromium ions from potable water, Sci. Rep., 7 (2017), doi: 10.1038/srep41423.
  73. C. Palmer, R. Puls, EPA Ground Water Issue: Natural Attenuation of Hexavalent Chromium in Groundwater and Soils, Environmental Protection Agency, EPA/540/5-94/505, 1994.