References

  1. H. Ali, E. Khan, What are heavy metals? Long-standing controversy over the scientific use of the term ‘Heavy metals’ – proposal of a comprehensive definition, Toxicol. Environ. Chem., 100 (2018) 6–19.
  2. M.A. Fukushima, K. Nakayasu, S. Tanaka, H. Nakamura, Speciation analysis of chromium after reduction of chromium (VI) by humic acid, Toxicol. Environ. Chem., 62 (1997) 207–215.
  3. R. Rakhunde, L. Deshpande, H.D. Juneja, Chemical speciation of chromium in water: a review, Crit. Rev. Env. Sci. Technol., 42 (2015) 776–810.
  4. Y.-g. Wu, Y.-n. Xu, J.-h. Zhang, S.-h. Hu, Evaluation of ecological risk and primary empirical research on heavy metals in polluted soil over Xiaoqinling gold mining region, Shaanxi, China, Trans. Nonferrous Met. Soc. China, 20 (2010) 688–694.
  5. J. Zhang, Y. Xu, Y. Wu, S. Hu, Y. Zhang, Dynamic characteristics of heavy metal accumulation in the farmland soil over Xiaoqinling gold-mining region, Shaanxi, China, Environ. Earth Sci., 78 (2019) 18–25.
  6. K.M. Hiscock, T. Grischek, Attenuation of groundwater pollution by bank filtration, J. Hydrol., 266 (2002) 139–144.
  7. WHO Chromium in Drinking-Water, Background Document for Preparation of WHO Guidelines for Drinking-Water Quality, World Health Organization, Geneva (WHO/SDE/WSH/03.04/4), 2003.
  8. S. Lata, P.K. Singh, S.R. Samadder, Regeneration of adsorbents and recovery of heavy metals: a review, Int. J. Environ. Sci. Technol., 12 (2015) 1461–1478.
  9. C. Lu, Y. Wu, S. Hu, Mobilization and transport of metal-rich colloidal particles from mine tailings into soil under transient chemical and physical conditions, Environ. Sci. Pollut. Res., 23 (2016) 8021–8034.
  10. C. Lu, Y. Wu, S. Hu, Drying-wetting cycles facilitated mobilization and transport of metal-rich colloidal particles from exposed mine tailing into Soil in a gold mining region along the silk road, Environ. Sci. Pollut. Res., 75 (2016) 1–12.
  11. Y. Wu, Y. Zhang, J. Qian, X. Xin, S. Hu, S. Zhang, J. Wei, An exploratory study on low-concentration hexavalent chromium adsorption by Fe(III)-cross-linked chitosan beads, R. Soc. Open Sci., 4 (2017) 170905.
  12. B. Zhou, Y. Wu, J. Chan, S. Wang, S. Hu, Batch adsorption and column transport studies of 2,4,6-trinitrotoluene in Chinese loess, Bull. Environ. Contam. Toxicol., 102 (2019) 272–278.
  13. B. Zhou, Y. Wu, J. Chan, S. Wang, S. Hu, Wetting-drying cycles enhance the release and transport of autochthonous colloidal particles in Chinese loess, Hum. Ecol. Risk Assess., 25 (2019) 1571402.
  14. M.H. Dehghani, D. Sanaei, I. Ali, A. Bhatnagar, Removal of chromium(VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: kinetic modeling and isotherm studies, J. Mol. Liq., 215 (2016) 671–679.
  15. M.H. Dehghani, A. Zarei, A. Mesdaghinia, R. Nabizadeh, M. Alimohammadi, M. Afsharnia, Adsorption of Cr(VI) ions from aqueous systems using thermally sodium organo-bentonite biopolymer composite (TSOBC): response surface methodology, isotherm, kinetic and thermodynamic studies, Desal. Wat. Treat., 85 (2017) 298–312.
  16. J. Niu, X. Jia, Y. Zhao, Y. Liu, Y. Zhong, Z. Zhai, Z. Li, Adsorbing low concentrations of Cr(VI) onto CeO2@ZSM-5 and the adsorption kinetics, isotherms and thermodynamics, Water Sci. Technol., 77 (2018) 2327–2340.
  17. X. Sun, Z. Jing, H. Wang, J. Li, Removal of low concentration Cr(VI) from aqueous solution by modified wheat straw, J. Appl. Polym. Sci., 129 (2013) 1555–1562.
  18. N. Yi, Y. Wu, J. Wei, S. Zhang, P. Ji, Adsorption of the low concentration Cr(VI) on magnetic chitosan/PVA hydrogel beads, Fresenius Environ. Bull., 25 (2016) 2174–2182.
  19. Y. Wu, L. Fan, S. Hu, S. Wang, H. Yao, K. Wang, Role of dissolved iron ions in nanoparticulate zero-valent iron/H2O2 Fenton-like system, Int. J. Environ. Sci. Technol., 16 (2019) 4551–4562.
  20. A.Y. Andelib, A.N. Deveci, Adsorption of chromium on chitosan: optimization, kinetics and thermodynamics, Chem. Eng. J., 151 (2009) 188–194.
  21. V.M. Boddu, K. Abburi, J.L. Talbott, Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent, Environ. Sci. Technol., 37 (2003) 4449–4456.
  22. S. Kahu, A. Shekhawat, D. Saravanan, R. Jugade, Ionic solidimpregnated sulphate-crosslinked chitosan for effective adsorption of hexavalent chromium from effluents, Int. J. Environ. Sci. Technol., 13 (2016) 2269–2282.
  23. X. Xin, Y. Wu, S. Hu, Y. Zhang, Preparation and performance analysis of chitosan/polyacrylamide/poly (vinyl alcohol)/Fe/glutaraldehyde copolymer for Cr(VI) adsorption, Desal. Wat. Treat., 102 (2018) 151–164.
  24. M. Amara, H. Kerdjoudj, A modified anion-exchange membrane applied to purification of effluent containing different anions pretreatment before desalination, Desalination, 206 (2007) 205–209.
  25. H. Cui, M. Fu, S. Yu, M. Wang, Reduction and removal of Cr(VI) from aqueous solutions using modified by products of beer production, J. Hazard. Mater., 186 (2011) 1625–1631.
  26. R.A.A. Muzzarelli, J. Boudrant, D. Meyer, N. Manno, M. Demarchis, M.G. Paoletti, Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: a tribute to henri braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial, Carbohydr. Polym., 87 (2012) 995–1012.
  27. M.G. Rajiv, S. Meenakshi, Preparation of amino terminated polyamidoamine functionalized chitosan beads and its Cr(VI) uptake studies, Carbohydr. Polym., 91 (2013) 631–637.
  28. T. Zhou, L. Fang, X. Wang, M. Han, S. Zhang, R. Han, Adsorption of the herbicide 2,4-dichlorophenoxyacetic acid by Fe-crosslinked chitosan complex in batch mode, Desal. Wat. Treat., 70 (2017) 294–301.
  29. N.R. Kildeeva, P.A. Perminov, L.V. Vladimirov, V.V. Novikov, S.N. Mikhailov, About mechanism of chitosan cross-linking with glutaraldehyde, Russ. J. Bioorg. Chem., 35 (2009) 360–369.
  30. D. Liu, C. Poon, K. Lu, C. He, W. Lin, Self-assembled nanoscale coordination polymers with trigger release properties for effective anticancer therapy, Nat. Commun., 5 (2014) 4182–4192.
  31. V. Dimos, K.J. Haralambous, S. Malamis, A review on the recent studies for chromium species adsorption on raw and modified natural minerals, Crit. Rev. Env. Sci. Technol., 42 (2011) 1977–2016.
  32. D.E. Kimbrough, Y. Cohen, A.M. Winer, L. Creelman, A critical assessment of chromium in the environment, Crit. Rev. Env. Sci. Technol., 29 (1999) 1–49.
  33. N.N. Thinh, P.T.B. Hanh, L.T.T. Ha, L.N. Anh, T.V. Hoang, V.D. Hoang, L.H. Dang, N.V. Khoi, T.D Lam, Magnetic chitosan nanoparticles for removal of Cr(VI) from aqueous solution, Mater. Sci. Eng., 33 (2013) 1214–1218.
  34. Y. Jiang, X. Yu, T. Luo, Y. Jia, J. Liu, X. Huang, γ-Fe2O3 nanoparticles encapsulated millimeter-sized magnetic chitosan beads for removal of Cr(VI) from water: thermodynamics, kinetics, regeneration, and uptake mechanisms, J. Chem. Eng. Data, 58 (2013) 3142–3149.
  35. N. Lapa, R. Barbosa, M.H. Lopes, B. Mendes, P. Abelha, I. Gulyurtlu, J.S. Oliveira, Chemical and ecotoxicological characterization of ashes obtained from sewage sludge combustion in a fluidised-bed reactor, J. Hazard. Mater., 147 (2007) 175–183.
  36. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solutions, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89 (1963) 31–59.
  37. R. Khosravi, A. Azizi, R. Ghaedrahmati, V.K. Gupta, S. Agarwal, Adsorption of gold from cyanide leaching solution onto activated carbon originating from coconut shell-optimization, kinetics and equilibrium studies, J. Ind. Eng. Chem., 54 (2017) 464–471.
  38. I. Langmuir, The constitution and fundamental properties of solids and liquids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  39. L. Tofan, C. Paduraru, Sorption studies of AgI, CdII and PbII ions on sulphydryl hemp fibers, Croat. Chem. Acta, 77 (2004) 581–586.
  40. L. Sun, L. Zhang, C. Liang, Z. Yuan, Y. Zhang, W. Xu, J. Zhang, Y. Chen, Chitosan modified Fe0 nanowires in porous anodic alumina and their application for the removal of hexavalent chromium from water, J. Mater. Chem., 21 (2011) 5877–5880.
  41. B. Jiang, J. Guo, Z. Wang, X. Zheng, J. Zheng, W. Wu, M. Wu, Q. Xue, A green approach towards simultaneous remediations of chromium(VI) and arsenic(III) in aqueous solution, Chem. Eng. J., 262 (2015) 1144–1151.