References

  1. A.J. Kang, A.K. Brown, C.S. Wong, Z. Huang, Q. Yuan, Variation in bacterial community structure of aerobic granular and suspended activated sludge in the presence of the antibiotic sulfamethoxazole, Bioresour. Technol., 261 (2018) 322–328.
  2. S.L. de Sousa Rollemberg, A.R. Mendes Barros, P.I. Milen Firmino, A. Bezerra dos Santos, Aerobic granular sludge: Cultivation parameters and removal mechanisms, Bioresour. Technol., 270 (2018) 678–688.
  3. J.H. Tay, Q.S. Liu, Y. Liu, The effects of shear force on the formation, structure and metabolism of aerobic granules, Appl. Microbiol. Biotechnol., 57 (2001) 227–233.
  4. B.X. Thanh, C. Visvanathan, R. Ben Aim, Characterization of aerobic granular sludge at various organic loading rates, Process Biochem., 44 (2009) 242–245.
  5. P. Vijayalayan, B.X. Thanh, C. Visvanathan, Simultaneous nitrification denitrification in a batch granulation membrane airlift bioreactor, Int. Biodeterior. Biodegrad., 95 (2014) 139–143.
  6. S. López-Palau, J. Dosta, J. Mata-Álvarez, Start-up of an aerobic granular sequencing batch reactor for the treatment of winery wastewater, Water Sci. Technol., 60 (2009) 1049–1054.
  7. J. Liu, J. Li, X. Wang, Q. Zhang, H. Littleton, Rapid aerobic granulation in an SBR treating piggery wastewater by seeding sludge from a municipal WWTP, J. Environ. Sci. (China), 51 (2017) 332–341.
  8. I. Othman, A.N. Anuar, Z. Ujang, N.H. Rosman, H. Harun, S. Chelliapan, Livestock wastewater treatment using aerobic granular sludge, Bioresour. Technol., 133 (2013) 630–634.
  9. S.G. Wang, X.W. Liu, W.X. Gong, B.Y. Gao, D.H. Zhang, H.Q. Yu, Aerobic granulation with brewery wastewater in a sequencing batch reactor, Bioresour. Technol., 98 (2007) 2142–2147.
  10. N.H. Rosman, A. Nor Anuar, S. Chelliapan, M.F. Md Din, Z. Ujang, Characteristics and performance of aerobic granular sludge treating rubber wastewater at different hydraulic retention time, Bioresour. Technol., 161 (2014) 155–161.
  11. C. Chen, J. Ming, B.A. Yoza, J. Liang, Q.X. Li, H. Guo, Z. Liu, J. Deng, Q. Wang, Characterization of aerobic granular sludge used for the treatment of petroleum wastewater, Bioresour. Technol., 271 (2019) 353–359.
  12. Z. Zhang, Z. Yu, J. Dong, Z. Wang, K. Ma, X. Xu, P.J.J. Alvarezc, L. Zhu, Stability of aerobic granular sludge under condition of low influent C/N ratio: correlation of sludge property and functional microorganism, Bioresour. Technol., 270 (2018) 391–399.
  13. I.S. Kim, S.M. Kim, A. Jang, Characterization of aerobic granules by microbial density at different COD loading rates, Bioresour. Technol., 99 (2008) 18–25.
  14. S.G. Wang, L.H. Gai, L.J. Zhao, M.H. Fan, W.X. Gong, B.Y. Gao, Y. Ma, Aerobic granules for low-strength wastewater treatment: formation, structure, and microbial community, J. Chem. Technol. Biotechnol., 84 (2009) 1015–1020.
  15. R.A. Hamza, Z. Sheng, O.T. Iorhemen, M.S. Zaghloul, J.H. Tay, Impact of food-to-microorganisms ratio on the stability of aerobic granular sludge treating high-strength organic wastewater, Water Res., 147 (2018) 287–298.
  16. S.F. Corsino, D. Di Trapani, M. Torregrossa, G. Viviani, Aerobic granular sludge treating high strength citrus wastewater: analysis of pH and organic loading rate effect on kinetics, performance and stability, J. Environ. Manage., 214 (2018) 23–35.
  17. S.-F. Yang, J.-H. Tay, Y. Liu, Effect of substrate nitrogen/chemical oxygen demand ratio on the formation of aerobic granules, J. Environ. Eng., 131 (2004) 86–92.
  18. D. Wei, Z. Qiao, Y. Zhang, L. Hao, W. Si, B. Du, Q. Wei, Effect of COD/N ratio on cultivation of aerobic granular sludge in a pilotscale sequencing batch reactor, Appl. Microbiol. Biotechnol., 97 (2013) 1745–1753.
  19. J. Luo, T. Hao, L. Wei, H.R. Mackey, Z. Lin, G.H. Chen, Impact of influent COD/N ratio on disintegration of aerobic granular sludge, Water Res., 62 (2014) 127–135.
  20. H.N.P. Vo, X.T. Bui, T.T. Nguyen, D.D. Nguyen, T.S. Dao, N.D.T. Cao, T.K.Q. Vo, Effects of nutrient ratios and carbon dioxide bio-sequestration on biomass growth of Chlorella sp. in bubble column photobioreactor, J. Environ. Manage., 219 (2018) 1–8.
  21. Q.S. Liu, J.H. Tay, Y. Liu, Substrate concentration-independent aerobic granulation in sequential aerobic sludge blanket reactor, Environ. Technol. (UK), 24 (2003) 1235–1242.
  22. M. Hosseini, A.B. Khoshfetrat, E. Sahraei, S. Ebrahimi, Continuous nitrifying granular sludge bioreactor: influence of aeration and ammonium loading rate, Process Saf. Environ. Prot., 92 (2014) 869–878.
  23. J. Lin, P. Zhang, G. Li, J. Yin, J. Li, X. Zhao, Effect of COD/N ratio on nitrogen removal in a membrane-aerated biofilm reactor, Int. Biodeterior. Biodegrad., 113 (2016) 74–79.
  24. C. Wan, S. Sun, D.J. Lee, X. Liu, L. Wang, X. Yang, X. Pan, Partial nitrification using aerobic granules in continuous-flow reactor: rapid startup, Bioresour. Technol., 142 (2013) 517–522.
  25. X. Hu, L. Xie, H. Shim, S. Zhang, D. Yang, Biological nutrient removal in a full scale anoxic/anaerobic/aerobic/pre-anoxic-MBR plant for low C/N ratio municipal wastewater treatment, Chinese J. Chem. Eng., 22 (2014) 447–454.
  26. B. Wang, M. Zhao, Y. Guo, Y. Peng, Y. Yuan, Long-term partial nitritation and microbial characteristics in treating low C/N ratio domestic wastewater, Environ. Sci. Water Res. Technol., 4 (2018) 820–827.
  27. B.X. Thanh, C. Visvanathan, M. Spérandio, R. Ben Aim, Fouling characterization in aerobic granulation coupled baffled membrane separation unit, J. Membr. Sci., 318 (2008) 334–339.
  28. Q. He, W. Zhang, S. Zhang, H. Wang, Enanced nitrogen removal in an aerobic granular sequencing batch reactor performing simultaneous nitrification, endogenous denitrification and phosphorus removal with low superficial gas velocity, Chem. Eng. J., 326 (2017) 1223–1231.
  29. APHA, Standard Methods for the Examination of Water & Wastewater, 2005.
  30. W. Metcalf, C. Eddy, Metcalf and Eddy Wastewater Engineering: Treatment and Reuse, Wastewater Engineering Treatment and Reuse, McGraw Hill, New York, NY, 2003.
  31. Z. Xu, L. Song, X. Dai, X. Chai, PHBV polymer supported denitrification system efficiently treated high nitrate concentration wastewater: denitrification performance, microbial community structure evolution and key denitrifying bacteria, Chemosphere, 197 (2018) 96–104.
  32. S.J. Sarma, J.H. Tay, A. Chu, Finding knowledge gaps in aerobic granulation technology, Trends Biotechnol., 35 (2017) 66–78.
  33. Q. He, L. Chen, S. Zhang, R. Chen, H. Wang, Hydrodynamic shear force shaped the microbial community and function in the aerobic granular sequencing batch reactors for low carbon to nitrogen (C/N) municipal wastewater treatment, Bioresour. Technol., 271 (2019) 48–58.
  34. Y. Yin, J. Sun, F. Liu, L. Wang, Effect of nitrogen deficiency on the stability of aerobic granular sludge, Bioresour. Technol., 275 (2019) 307–313.
  35. S.S. Adav, D.J. Lee, J.Y. Lai, Potential cause of aerobic granular sludge breakdown at high organic loading rates, Appl. Microbiol. Biotechnol., 85 (2010) 1601–1610.
  36. J. Li, J. Meng, J. Li, C. Wang, K. Deng, K. Sun, G. Buelna, The effect and biological mechanism of COD/TN ratio on nitrogen removal in a novel upflow microaerobic sludge reactor treating manure-free piggery wastewater, Bioresour. Technol., 209 (2016) 360–368.
  37. I. Kocaturk, T.H. Erguder, Influent COD/TAN ratio affects the carbon and nitrogen removal efficiency and stability of aerobic granules, Ecol. Eng., 90 (2016) 12–24.
  38. N.A. Awang, M.G. Shaaban, Effect of reactor height/diameter ratio and organic loading rate on formation of aerobic granular sludge in sewage treatment, Int. Biodeterior. Biodegrad., 112 (2016) 1–11.
  39. W. Li, C. Su, X. Liu, L. Zhang, Influence of the organic loading rate on the performance and the granular sludge characteristics of an EGSB reactor used for treating traditional Chinese medicine wastewater, Environ. Sci. Pollut. Res., 21 (2014) 8167–8175.
  40. Q. He, S. Zhang, Z. Zou, L. an Zheng, H. Wang, Unraveling characteristics of simultaneous nitrification, denitrification and phosphorus removal (SNDPR) in an aerobic granular sequencing batch reactor, Bioresour. Technol., 220 (2016) 651–655.
  41. Y.C. Chiu, L.L. Lee, C.N. Chang, A.C. Chao, Control of carbon and ammonium ratio for simultaneous nitrification and denitrification in a sequencing batch bioreactor, Int. Biodeterior. Biodegrad., 59 (2007) 1–7.
  42. Y.V. Nancharaiah, T.V. Krishna Mohan, P.M. Satya Sai, V.P. Venugopalan, Denitrification of high strength nitrate bearing acidic waters in granular sludge sequencing batch reactors, Int. Biodeterior. Biodegrad., 119 (2017) 28–36.
  43. Q. Feng, J. sun Cao, L.N. Chen, C.Y. Guo, J. yi Tan, H. lian Xu, Simultaneous nitrification and denitrification at variable C/N ratio in aerobic granular sequencing batch reactors, J. Food, Agric. Environ., 9 (2011) 1131–1136.
  44. J.H. Tay, S. Pan, S.T.L. Tay, V. Ivanov, Y. Liu, The effect of organic loading rate on the aerobic granulation: the development of shear force theory, Water Sci. Technol., 47 (2003) 235–240.
  45. L. Liu, Z. Wang, J. Yao, X. Sun, W. Cai, Investigation on the formation and kinetics of glucose-fed aerobic granular sludge, Enzyme Microb. Technol., 36 (2005) 487–491.
  46. S.F. Yang, J.H. Tay, Y. Liu, Inhibition of free ammonia to the formation of aerobic granules, Biochem. Eng. J., 17 (2004) 41–48.
  47. J.J. Beun, M.C.M. Van Loosdrecht, J.J. Heijnen, Aerobic granulation in a sequencing batch airlift reactor, Water Res., 36 (2002) 702–712.
  48. L. Wu, C. Peng, Y. Peng, L. Li, S. Wang, Y. Ma, Effect of wastewater COD/N ratio on aerobic nitrifying sludge granulation and microbial population shift, J. Environ. Sci., 24 (2012) 234–241.
  49. I.H. Farooqi, F. Basheer, Treatment of adsorbable organic halide (AOX) from pulp and paper industry wastewater using aerobic granules in pilot scale SBR, J. Water Process Eng., 19 (2017) 60–66.
  50. P.T. Anh, C. Kroeze, S.R. Bush, A.P.J. Mol, Water pollution by intensive brackish shrimp farming in south-east Vietnam: causes and options for control, Agric. Water Manage., 97 (2010) 872–882.
  51. B.X. Thanh, H. Berg, L.N.T. Nguyen, C.T. Da, Effects of hydraulic retention time on organic and nitrogen removal in a spongemembrane bioreactor, Environ. Eng. Sci., 30 (2013) 194–199.