References
- Y. Yu, K. Hubacek, K. Feng, D. Guan, Assessing regional
and global water footprints for the UK, Ecol. Econ., 69 (2010)
1140–1147.
- N.R. Mizyed, Challenges to treated wastewater reuse in arid
and semi-arid areas, Environ. Sci. Policy, 25 (2013) 186–195.
- R. Khlifi, H. Chaffai, Head and neck cancer due to heavy metal
exposure via tobacco smoking and professional exposure: a
review, Toxicol. Appl. Pharmacol., 248 (2010) 71–88.
- S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals
uptake from contaminated water: a review, J. Hazard. Mater.,
97 (2003) 219–243.
- G. Khitrov, R. Jaeger, Chromium Toxicity, The Ronald O. Perlman
Department of Dermatology, Department of Toxicology NYU
Grad School of Arts and Science. Available: http://www.nyu.edu/classes/jaeger/chromium_toxicity.htm. (Accessed 20 November
2013).
- M. Bhaumik, A. Maity, V.V. Srinivasu, M.S. Onyango, Enhanced
removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite, J. Hazard. Mater., 190 (2011)
381–390.
- W.S. Wan Ngah, H. Makm, Removal of heavy metal ions from
wastewater by chemically modified plant wastes as adsorbents:
a review, Bioresour. Technol., 99 (2008) 3935–3948.
- M. Barakat, New trends in removing heavy metals from
industrial wastewater, Arab. J. Chem., 4 (2011) 361–377.
- W. Büchner, R. Schliébs, G. Winter, K.H. Bucjel, Primary
Inorganic Materials, In D.H. Dyllick-Brenzinger, Industrial
Inorganic Chemistry, 1989, pp. 8–12, Verlagsgesellschaft, New
York.
- M. Mahmoudi, S. Sant, B. Wang, S. Laurent, T. Sen, Superparamagnetic
iron oxide nanoparticles (SPIONs): development,
surface modification and applications in chemotherapy, Adv.
Drug Delivery Rev., 63 (2011) 24–46.
- S.A. Al-Saydeh, M.H. El-Naas, S.J. Zaidi, Copper removal from
industrial wastewater: a comprehensive review, J. Ind. Eng.
Chem., 56 (2017) 35–44.
- P. Khanna, C. Ong, B. Bay, G. Baeg, Nanotoxicity: an interplay
of oxidative stress, inflammation and cell death, Nanomaterials,
5 (2015) 1163–1180.
- A.S. Teja, P.Y. Koh, Synthesis, properties, and applications
of magnetic iron oxide nanoparticles, Prog. Cryst. Growth
Charact. Mater., 55 (2009) 22–45.
- A.M. Seid-Mohammadi, Gh. Asgari, M.T. Sammadi, M. Ahmadian,
A. Poormohammadi, Removal of humic acid from synthetic
water using chitosan as coagulant aid in electrocoagulation
process for Al and Fe electrodes, Res. J. Chem. Environ.,
18 (2014) 19–25.
- M.M. Sagrario, L.A. Gracia-Cerda, T.J.R. Lubian, Preparation
and characterization of cobalt ferrite by the polymerized
complex method, Mater. Lett., 59 (2005) 1056–1060.
- B.R. Galindo, A.O. Valenzuela, L.A. Gracia-Cerda, R.O. Fernandez,
M.J. Aquino, G. Ramos, Y.H. Madeira, Synthesis and
magneto-structural study of CoxFe3−xO4 nanoparticles, J. Magn.
Mag. Mater., 294 (2005) e33–e36.
- Z.L. Liu, X. Wang, K.L. Yao, G.H. Du, Q.H. Lu, Z.H. Ding,
J. Tao, Q. Ning, X.P. Luo, D.Y. Tian, D. Xi, Synthesis of magnetite
nanoparticles in W/O microemulsion, J. Mater. Sci., 39 (2004)
2633–2636.
- P.A. Dresco, V.S. Zaitsev, R.J. Gambino, B. Chu, Preparation and
properties of magnetite and polymer magnetite nanoparticles,
Langmuir, 15 (1999) 1945–1951.
- K. Sunderland, P. Brunetti, L. Spinu, J. Fang, Z. Wang, W. Lu,
Synthesis of γ-Fe2O3/polypyrrole nanocomposite materials, Mater.
Lett., 58 (2004) 3136–3140.
- L.A. Gracia-Cerda, R. Chapa-Rodriguez, J. Bonilla-Rios,
In situ synthesis of iron oxide nanoparticles in a styrenedivinylbenzene
copolymer, Polym. Bull., 58 (2007) 989–994.
- H. Lin, Y. Watanabe, M. Kumura, K. Hanabusa, H. Shirai,
Preparation of magnetic poly(vinyl alcohol) (PVA) materials by
in situ synthesis of magnetite in a PVA matrix, J. Appl. Polym.
Sci., 87 (2003) 1239–1247.
- P.S. Chowdhury, P.R. Arya, K. Raha, Green synthesis of
nanoscopic iron oxide particles: a potential oxidizer in nanoenergetics,
Synth. React. Inorg. Met., 37 (2007) 447–451.
- D.M. Kim, M. Mikhaylova, F.H. Wang, J. Kehr, B. Bjelke,
Y. Zhang, T. Tsakalakos, M. Muhammed, Starch-coated superparamagnetic
nanoparticles as MR contrast agents, Chem.
Mater., 15 (2003) 4343–4351.
- Y.-Y. Liang, L.-M. Zhang, W. Li, Polysaccharide-modified iron
oxide nanoparticles as an effective magnetic affinity adsorbent
for bovine serum albumin, Colloid Polym. Sci., 285 (2007)
1193–1199.
- O. Carp, D. Visinescu, G. Patrinoiu, A. Tirsoaga, Green synthetic
strategies of oxide materials: polysaccharides-assisted
synthesis. Part IV. Alginate-assisted synthesis of nanosized
metal oxides, Rev. Roum. Chim., 56 (2011) 901–906.
- S. Plumejeau, J.G. Alauzun, B. Boury, Hybrid metal oxide@
biopolymer materials precursors of metal oxides and metal
oxide-carbon composites, Ceram. Soc. Jpn., 123 (2015) 695–708.
- A. Ali, H. Zafar, M. Zia, I. ul Haq, A.-R. Phull, J.S. Ali, A. Hussain,
Synthesis, characterization, applications, and challenges of iron
oxide nanoparticles, Nanotechnol. Sci. Appl., 9 (2016) 49–67.
- M. Nidhin, R. Indumathy, K.J. Sreeram, B. Unninair, Synthesis
of iron oxide nanoparticles of narrow size distribution on
polysaccharide templates, Bull. Mater. Sci., 31 (2008) 93–96.
- S.K. Janardhanan, I. Ramasamy, B. Unni Nair, Synthesis of iron
oxide nanoparticles using chitosan and starch templates, Trans.
Met. Chem., 33 (2008) 127–131.
- S. Chen, J. Feng, X. Guo, J. Hong, W. Ding, One-Step Wet
Chemistry for Preparation of Magnetite Nano-rods, Mater.
Lett., 59 (2005) 985–988.
- S. Basavaraja, D.S. Balaji, M.D. Bedre, Solvothermal synthesis
and characterization of acicular α-Fe2O3 nanoparticles, Bull.
Mater. Sci., 34 (2011) 1313–1317.
- J.A. Gadsden, Infrared Spectra of Minerals and Related
Inorganic Compounds, Butterworths Publ., England, 1975.
- J. Coates, Interpretation of Infrared Spectra, A Practical
Approach, Encyclopedia of Analytical Chemistry, A. Meyers,
Ed., John Wiley & Sons Ltd., Chichester, 2000, p. 10815.
- V.C. Farmer, The Infrared Spectra of Minerals, Mineralogical
Society, London, 1974, p. 539.
- M.M. Rahman, S.B. Khan, A. Jamal, Iron Oxide Nanoparticles,
Intech Open access publisher, 2011, p. 43.
- T.M. Tamer, W.M. Abou-Taleb, G.D. Roston, M.S. Mohyeldin,
A.M. Omer, E.F. Shehata, Characterization and evaluation of
iron oxide nanoparticles prepared using hydrogel template
based on phosphonate alginate, Nanosci. Nanotechnol.-Asia,
7 (2017) 220–232.
- M. Hua, Heavy metal removal from water/wastewater by
nanosized metal oxides: a review, J. Hazard. Mater., 211–212
(2012) 317–331.
- D. Kitkaew, A. Phetrak, S. Ampawong, R. Mingkhwan,
D. Phihusut, K. Okanurak, C. Polprasert, Fast and efficient
removal of hexavalent chromium from water by iron oxide
particles, Environ. Nat. Resour. J., 16 (2018) 91–100.
- D.S. Shirsath, B.N. Patil, V.S. Shrivastava, Development of new
technology for the removal of Cr6+ by magnetic nanoadsorbents
from the industrial or sewage wastewater, J. Mater. Environ.
Sci., 9 (2018) 1969–1978.
- K.A. Al-Saad, M.A. Amr, D.T. Hadi, R.S. Arar, M.M. AL-Sulaiti,
T.A. Abdulmalik, N.M. Alsahamary, J.C. Kwak, Iron oxide
nanoparticles:
applicability for heavy metal removal from
contaminated water, Arab. J. Nucl. Sci. Appl., 45 (2012)
335–346.
- B. Lkhagvadulam, B. Tsagaantsetseg, D. Tergel, S. Chuluunkhuyag,
Removal of chromium from a tannery wastewater
by using a maghemite nanoparticles, Int. J. Environ. Sci. Dev.,
8 (2017) 696–702.
- R. Ansari, Application of polyaniline and its composites for
adsorption/recovery of chromium (VI) from aqueous solutions,
Acta Chim. Slov., 53 (2006) 88–94.
- P. Yuan, Removal of hexavalent chromium [Cr(VI)] from
aqueous solutions by the diatomite-supported/unsupported
magnetite nanoparticles, J. Hazard. Mater., 173 (2010)
614–621.
- R. Chen, L. Chai, Q. Li, Y. Shi, Y. Wang, A. Mohammad,
Preparation and characterization of magnetic Fe3O4/CNT nanoparticles
by RPO method to enhance the efficient removal of
Cr(VI), Environ. Sci. Pollut. Res. Int., 20 (2013) 7175–7185.
- H.I. Adegoke, F.A. Adekola, O.S. Fatoki, B.J. Ximba, Adsorption
of Cr (VI) on synthetic hematite (α-Fe2O3) nanoparticles of
different morphologies, Korean J. Chem. Eng., 31 (2013) 142–154.
- S. Ramasubramaniam, C. Govindarajan, T. Gomathi,
P.N. Sudha, Removal of chromium (VI) from aqueous solution
using chitosan-starch blend, Der Pharm. Lett., 4 (2012) 240–248.
- Y.F. Shen, J. Tang, Z.H. Nie, Y.D. Wang, Y. Ren, L. Zuo,
Preparation and application of magnetic Fe3O4 nanoparticles for
wastewater purification, Sep. Purif. Technol., 68 (2009) 312–319.
- F. Rozada, L.F. Calvo, A.I. Garcia, J. Martin-Villacorta, M. Otero,
Dye adsorption by sewage sludge-based activated carbons in
batch and fixed-bed systems, Bioresour. Technol., 87 (2003)
221–230.
- G. Gode, E. Pehlivan, Adsorption of Cr(III) ions by Turkish
brown coals, Fuel Process. Technol., 86 (2005) 875–884.
- Y.S. Ho, Effect of pH on lead removal from water using tree
fern as the sorbent. Bioresour. Technol., 96 (2005) 1292–1296.
- M.M. Dubinin, E.D. Zaverina, L.V. Radushkevich, Sorption
and structure of active carbons I. adsorption of organic vapors,
Zhurnal Fizicheskoi Khimii, 21 (1947) 1351–1362.
- N. Unlü, M. Ersoz, Adsorption characteristics of heavy metal
ions onto a low cost biopolymeric sorbent from aqueous
solutions, J. Hazard. Mater., 136 (2006) 272–280.
- A. Mohammad, A.K.R. Rifaqat, A. Rais, A. Jameel, adsorption
studies on citus reticulate (fruit peel of orange): removal and
recovery of Ni (II) from electroplating wastewater, J. Hazard.
Mater., 79 (2000) 117–131.
- A. Stolz, Basic and applied aspects in the microbial degradation
of azo dyes, Appl. Microbiol. Biotechnol., 56 (2001) 69–80.
- B.H. Hameeda, L.H. China, S. Rengarajb, Adsorption of
4-chlorophenol onto activated carbon prepared from rattan
sawdust, Desalination, 225 (2008) 185–198.
- M.I. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on
promoted iron catalyst, Acta Physiochim. URSS, 12 (1940)
327–356.
- I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption isotherms,
kinetics, thermodynamics and desorption studies of
2,4,6-trichlorophenol
on oil palm empty fruit bunch-based
activated carbon, J. Hazard. Mater., 164 (2009) 473–482.
- M. Ozacar, I.A. Sengil, A kinetic study of metal complex dye
sorption onto pinedust, Process Biochem., 40 (2005) 565–572.
- P.K. Pandey; S.K. Sharma; S.S. Sambi, Kinetics and equilibrium
study of chromium adsorption on zeoliteNaX, Int. J. Environ.
Sci. Technol., 7 (2010) 395–404.
- M. Barkat, D. Nibou, S. Chegrouche, A. Mellah, Kinetics and
thermodynamics studies of chromium(VI) ions adsorption onto
activated carbon from aqueous solutions, Chem. Eng. Process.
Process Intensif., 48 (2009) 38–47.
- R.L. Tseng, Mesopore control of high surface area NaOHactivated
carbon, J. Colloid Interface Sci., 303 (2006) 494–502.
- G. Crini, H.N. Peindy, F. Gimbert, C. Robert, Removal of
C. I. Basic Green 4 (malachite green) from aqueous solutions
by adsorption using cyclodextrin-based adsorbent: kinetic
and equilibrium studies, Sep. Purif. Technol., 53 (2007) 97–110.
- G. McKay, The adsorption of dyestuffs from aqueous solution
using activated carbon: analytical solution for batch adsorption
based on external mass transfer and pore diffusion, Chem.
Eng. J., 27 (1983) 187–195.
- W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from
solution, J. Sanity, Eng. Div. Am. Soc. Civil. Eng., 89 (1963)
31–59.
- K. Kannan, M.M. Sundaram, Kinetics and mechanism of
removal of methylene blue by adsorption on various carbons—a
comparative study, Dyes Pigm., 51 (2001) 25–40.
- M. Sarkar, P.K. Acharya, B. Bhaskar, Modeling the removal
kinetics of some priority organic pollutants in water from
diffusion and activation energy parameters, J. Colloid Interface
Sci., 266 (2003) 28–32.
- G. McKay, M.S. Otterburn, J.A. Aja, Fuller’s earth and fired clay
as adsorbents for dye stuffs, Water Air Soil Pollut., 24 (1985)
307–322.
- S.K. Abdul Karim, S.F. Lim, S.N. David Chua, S.F. Salleh,
P.L. Law, Banana fibers as sorbent for removal of acid green dye
from water, J. Chem., 2016 (2016) 1–11.
- T.A. Khan, S. Dahiya, I. Ali, Use of kaolinite as adsorbent:
equilibrium, dynamics and thermodynamic studies on the
adsorption of Rhodamine B from aqueous solution, Appl. Clay
Sci., 69 (2012) 58–66.
- G. Zhao, J. Li, X. Wang, Kinetic and thermodynamic study of
1-naphthol adsorption from aqueous solution to sulfonated
graphene nanosheets, Chem. Eng. J., 173 (2011) 185–190.
- M. Alkan, O. Demirbas, S.Ç.M. Dogan, Sorption of acid red
57 from aqueous solution onto sepiolite, J. Hazard. Mater.,
B116 (2004) 135–145.
- N.K. Hamadi, X.D. Chen, M.M. Farid, M.G.Q. Lu, Adsorption
kinetics for the removal of chromium(VI) from aqueous
solution by adsorbents derived from used tyres and sawdust,
Chem. Eng. J., 84 (2001) 95–105.
- H.-D. Choi, J.-M. Cho, K. Baek, J.-S. Yang, J.-Y. Lee, Influence
of cationic surfactant on adsorption of Cr(VI) onto activated
carbon, J. Hazard. Mater., 161 (2009) 1565–1568.
- H.-D. Choi, W.-S. Jung, J.-M. Cho, B.-G. Ryun, J.-S. Yang,
K. Baek, Adsorption of Cr(VI) onto cationic surfactant-modified
activated carbon, J. Hazard. Mater., 166 (2009) 642–646.
- S. Rajput, C.U. Pittman, D. Mohan, Magnetic magnetite (Fe3O4)
nanoparticle synthesis and applications for lead (Pb2+) and
chromium (Cr6+) removal from water, J. Colloid Interface Sci.,
468 (2016) 334–346.
- W. Liu, J. Zhang, C. Zhang, Y. Wang, Y. Li, Adsorptive removal
of Cr (VI) by Fe-modified activated carbon prepared from Trapa
natans husk, Chem. Eng. J., 162 (2010) 677–684.
- N.H. Singh, K. Kezo, A. Debnath, B. Saha, Enhanced adsorption
performance of a novel Fe-Mn-Zr metal oxide nanocomposite
adsorbent for anionic dyes from binary dye mix: response
surface optimization and neural network modeling, Appl.
Organometal Chem., 32 (2018) e4165.
- M. Bhowmik, K. Deb, A. Debnath, B. Saha, Mixed phase Fe2O3/Mn3O4 magnetic nanocomposite for enhanced adsorption of
methyl orange dye: neural network modeling and response
surface methodology optimization, Appl. Organometal Chem.,
32 (2018) e4186.
- M. Bhowmik, A. Debnath, B. Saha, Fabrication of mixed phase
calcium ferrite and zirconia nanocomposite for abatement of
methyl orange dye from aqua matrix: optimization of process
parameters, Appl. Organometal Chem., 32 (2018) e4607.
- A. Debnatha, K. Deb, K.K. Chattopadhyay, Biswajit Saha, Methyl
orange adsorption onto simple chemical route synthesized
crystalline α-Fe2O3 nanoparticles: kinetic, equilibrium isotherm,
and neural network modeling, Desal. Wat. Treat., 57
13549–13560.
- N.H. Singh, A. Bera, A. Debnath, B. Saha, Mixed phase
crystalline hausmannite and manganese ferrite nanoparticles
with magnetic properties for environmental application, Mater.
Today Proc., 5 (2018) 2300–2305.