References

  1. T. Anirudhan, M. Ramachandran, Removal of 2,4,6-trichlorophenol from water and petroleum refinery industry effluents by surfactant-modified bentonite, J. Water Process Eng., 1 (2014) 46–53.
  2. J. Fan, J. Zhang, C. Zhang, L. Ren, Q. Shi, Adsorption of 2,4,6-trichlorophenol from aqueous solution onto activated carbon derived from loosestrife, Desalination, 267 (2011) 139–146.
  3. Z. Zango, Z.N. Garba, N.A. Bakar, W. Tan, M.A. Bakar, Adsorption studies of Cu2+–Hal nanocomposites for the removal of 2,4,6-trichlorophenol, Appl. Clay Sci., 132 (2016) 68–78.
  4. Z.N. Garba, A.A. Rahim, Optimization of activated carbon preparation conditions from Prosopis africana seed hulls for the removal of 2,4,6-trichlorophenol from aqueous solution, Desal. Wat. Treat., 56 (2015) 2879–2889.
  5. B. Hameed, I. Tan, A. Ahmad, Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon, Chem. Eng. J., 144 (2008) 235–244.
  6. B. Gao, L. Liu, J. Liu, F. Yang, Photocatalytic degradation of 2,4,6-tribromophenol over Fe-doped ZnIn2S4: stable activity and enhanced debromination, Appl. Catal., B, 129 (2013) 89–97.
  7. I. Tan, A. Ahmad, B. Hameed, Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon, J. Hazard. Mater., 164 (2009) 473–482.
  8. H. Ji, F. Chang, X. Hu, W. Qin, J. Shen, Photocatalytic degradation of 2,4,6-trichlorophenol over g-C3N4 under visible light irradiation, Chem. Eng. J., 218 (2013) 183–190.
  9. L. Liu, F. Chen, F. Yang, Y. Chen, J. Crittenden, Photocatalytic degradation of 2,4-dichlorophenol using nanoscale Fe/TiO2, Chem. Eng. J., 181 (2012) 189–195.
  10. E. Bazrafshan, T.J. Al-Musawi, M.F. Silva, A.H. Panahi, M. Havangi, F.K. Mostafapur, Photocatalytic degradation of catechol using ZnO nanoparticles as catalyst: optimizing the experimental parameters using the Box–Behnken statistical methodology and kinetic studies, Microchem. J., 147 (2019) 643–653.
  11. T.J. Al-Musawi, H. Kamani, E. Bazrafshan, A.H. Panahi, M.F. Silva, G. Abi, Optimization the effects of physicochemical parameters on the degradation of cephalexin in sono-fenton reactor by using Box–Behnken response surface methodology, Catal. Lett., 149 (2019) 1186–1196.
  12. H. Kamani, S. Nasseri, M. Khoobi, R.N. Nodehi, A.H. Mahvi, Sonocatalytic degradation of humic acid by N-doped TiO2 nano-particle in aqueous solution, J. Environ. Health Sci. Eng., 14 (2016) 3.
  13. E. Bazrafshan, M. Sobhanikia, F. Mostafapour, H. Kamani, D. Balarak, Chromium biosorption from aqueous environments by mucilaginous seeds of Cydonia oblonga: kinetic and thermodynamic studies, Global Nest J., 19 (2017) 269–277.
  14. M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation, Int. J. Electrochem. Sci., 7 (2012) 4871–4888.
  15. H. Kamani, E. Bazrafshan, S.D. Ashrafi, F. Sancholi, Efficiency of sono-nano-catalytic process of TiO2 nano-particle in removal of erythromycin and metronidazole from aqueous solution, J. Mazandaran Univ. Med. Sci., 27 (2017) 140–154.
  16. M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Visible light photocatalytic activity of Fe3+-doped ZnO nanoparticle prepared via sol–gel technique, Chemosphere, 91 (2013) 1604–1611.
  17. M. Galedari, M.M. Ghazi, S.R. Mirmasoomi, Photocatalytic process for the tetracycline removal under visible light: presenting a degradation model and optimization using response surface methodology (RSM), Chem. Eng. Res. Des., 145 (2019) 323–333.
  18. S. Mortazavian, A. Saber, D.E. James, Optimization of photocatalytic degradation of Acid Blue 113 and Acid Red 88 textile dyes in a UV-C/TiO2 suspension system: application of response surface methodology (RSM), Catalysts, 9 (2019) 360.
  19. P. Chawla, S.K. Sharma, A.P. Toor, Optimization and modeling of UV-TiO2 mediated photocatalytic degradation of golden yellow dye through response surface methodology, Chem. Eng. Commun., 206 (2019) 1123–1138.
  20. K. Nadafi, N. Rastkari, R. Nabizadeh, M. Gholami, M. Sarkhosh, Performance of modified natural zeolite for removal of 2,4,6-trichlorophenol from aqueous solutions, Toloo-e-Behdasht, 12 (2014).
  21. J. Yang, H. Chen, J. Gao, T. Yan, F. Zhou, S. Cui, W. Bi, Synthesis of Fe3O4/g-C3N4 nanocomposites and their application in the photodegradation of 2,4,6-trichlorophenol under visible light, Mater. Lett., 164 (2016) 183–189.
  22. C.-L. Zhang, S.-J. Cui, Y. Wang, Adsorption removal of pefloxacin from water by halloysite nanotubes, J. Ind. Eng. Chem., 23 (2015) 12–15.
  23. M. Kamali, K. Dindarlo, O. Rahmaniyan, V. Alipoor, Nanophotocatalytic activity of UV/Fe-doped TiO2 for removal of cis-chlordane from water, J. Prevent. Med., 3 (2017) 52–43.
  24. S. Yuan, X. Mao, A.N. Alshawabkeh, Efficient degradation of TCE in groundwater using Pd and electro-generated H2 and O2: a shift in pathway from hydrodechlorination to oxidation in the presence of ferrous ions, Environ. Sci. Technol., 46 (2012) 3398–3405.
  25. A. Sobczyński, Ł. Duczmal, W. Zmudziński, Phenol destruction by photocatalysis on TiO2: an attempt to solve the reaction mechanism, J. Mol. Catal. A: Chem., 213 (2004) 225–230.
  26. L. Xu, J. Wang, Degradation of 2,4,6-trichlorophenol using magnetic nanoscaled Fe3O4/CeO2 composite as a heterogeneous Fenton-like catalyst, Sep. Purif. Technol., 149 (2015) 255–264.
  27. S.-N. Nam, H. Cho, J. Han, N. Her, J. Yoon, Photocatalytic degradation of acesulfame K: optimization using the Box–Behnken design (BBD), Process Saf. Environ. Prot., 113 (2018) 10–21.
  28. P. Singh, A. Dhir, V.K. Sangal, Optimization of photocatalytic process parameters for the degradation of acrylonitrile using Box–Behnken design, Desal. Wat. Treat., 55 (2015) 1501–1508.
  29. S. Sohrabi, F. Akhlaghian, Modeling and optimization of phenol degradation over copper-doped titanium dioxide photocatalyst using response surface methodology, Process Saf. Environ. Prot., 99 (2016) 120–128.