References

  1. https://www.treehugger.com/clean-water/water-shortagesrising-across-the-globe-but-especially-india.html, Report, Last Seen Jan. 2018.
  2. M.A. Darwish, N.M. Al-Najem, Energy consumption by multistage flash and reverse osmosis desalters, Appl. Therm. Eng., 20 (2000) 399–416.
  3. H. El-Dessouky, H. Ettouney, H. Al-Fulaij, F. Mandani, Multistage flash desalination combined with thermal vapor compression, Chem. Eng. Process., 39 (2000) 343–356.
  4. M. Al-Shammiri, M. Safar, Multi-effect distillation plants: state of the art, Desalination, 126 (1999) 45–59.
  5. H. Ettouney, Visual basic computer package for thermal and membrane desalination processes, Desalination, 165 (2004) 393–408.
  6. F. Mandani, H. Ettouney, H. El-Dessouky, LiBr-H2O absorption heat pump for single-effect evaporation desalination process, Desalination, 128 (2000) 161–176.
  7. M.W. Tleimat, Freezing Methods. Principles of Desalination, Part B, 2nd ed., K.S. Spiegler, A.D. Laird, Eds., Academia Press, New York, 1980, pp. 360–400.
  8. J. Lindblom, Solar Thermal Technologies for Seawater Desalination: State of the Art, in Solar Energy, Danmarks Tekniske Universitet, Lyngby, 2003, pp. 93–108.
  9. R. Bhardwaj, M.V. ten Kortenaar, R.F. Mudde, Maximized production of water by increasing area of condensation surface for solar distillation, Appl. Energy, 154 (2015) 480–490.
  10. S. Gorgian, Development and Evaluation of a Point-Focus Parabolic Solar Still, Ph.D. Thesis, Tarbiat Modares University Faculty of Agriculture, Iran, 2013.
  11. B. Van der Bruggen, Desalination by distillation and by reverse osmosis — trends towards the future, Membr. Technol., 2 (2003) 6–9.
  12. Y. Gong, X.-l. Wang, L.-x. Yu, Process simulation of desalination by electrodialysis of an aqueous solution containing a neutral solute, Desalination, 172 (2005) 157–172.
  13. M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser, Water desalination via capacitive deionization: what is it and what can we expect from it?, Energy Environ. Sci., 8 (2015) 2296.
  14. S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater Sci., 58 (2013) 1388–1442.
  15. K. Laxman, Water Desalination by Nanostructuring Enhanced Control of Capacitive Deionization, Ph.D. Thesis, Department of Electrical and Computer Engineering College of Engineering, Sultan Qaboos University, Sultanate of Oman, 2015.
  16. X. Gao, A. Omosebi, J. Landon, K.L. Liu, Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption–desorption behavior, Energy Environ. Sci., 8 (2015) 897–909.
  17. X. Gao, S. Porada, A. Omosebi, K.-L. Liu, P.M. Biesheuvel, J. Landon, Complementary surface charge for enhanced capacitive deionization, Water Res., 92 (2016) 1–8.
  18. A. Subramani, M. Badruzzaman, J. Oppenheimer, J.G. Jacangelo, Energy minimization strategies and renewable energy utilization for desalination: a review, Water Res., 45 (2011) 1907–1920.
  19. K. Laxman, L. Al Gharibi, J. Dutta, Capacitive deionization with asymmetric electrodes: electrode capacitance vs electrode surface area, Electrochim. Acta, 176 (2015) 420–425.
  20. L. Zou, G. Morris, D. Qi, Using activated carbon electrode in electrosorptive deionisation of brackish water, Desalination, 225 (2008) 329−340.
  21. P. Xu, J.E. Drewes, D. Heil, G. Wang, Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology, Water Res., 42 (2008) 2605−2617.
  22. S. Porada, L. Weinstein, R. Dash, A. van der Wal, M. Bryjak, Y. Gogotsi, P.M. Biesheuvel, Water desalination using capacitive deionization with microporous carbon electrodes, ACS Appl. Mater. Interfaces, 4 (2012) 1194−1199.
  23. C. Tsouris, R. Mayes, J. Kiggans, K. Sharma, S. Yiacoumi, D. DePaoli, S. Dai, Mesoporous carbon for capacitive deionization of saline water, Environ. Sci. Technol., 45 (2011) 10243−10249.
  24. L. Wang, M. Wang, Z.-H. Huang, T.X. Cui, X.C. Gui, F.Y. Kang, K.L. Wang, D.H. Wu, Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes, J. Mater. Chem., 21 (2011) 18295−18299.
  25. H. Wang, D.S. Zhang, T.T. Yan, X.R. Wen, L.Y. Shi, J.P. Zhang, Graphene prepared via a novel pyridine−thermal strategy for capacitive deionization, J. Mater. Chem., 22 (2012) 23745−23748.
  26. N.-S. Kwak, J.S. Koo, T.S. Hwang, E.M. Choi, Synthesis and electrical properties of NaSS−MAA−MMA cation exchange membranes for membrane capacitive deionization (MCDI), Desalination, 285 (2012) 138−146.
  27. Y.W. Choi, M.S. Lee, T.H. Yang, Y.G. Yoon, S.H. Park, D.K. Kim, S.C. Yang, Ion Exchange Membrane for Flow- Electrode Capacitive Deionization Device and Flow-Electrode Capacitive Deionization Device Including the Same, Patent, EP 2857442, 2015.
  28. R. Zhao, P.M. Biesheuvel, A. van der Wal, Energy consumption and constant current operation in membrane capacitive deionization, Energy Environ. Sci., 5 (2012) 9520−9527.
  29. M.E. Suss, T.F. Baumann, W.L. Bourcier, C.M. Spadaccini, K.A. Rose, J.G. Santiago, M. Stadermann, Capacitive desalination with flow-through electrodes, Energy Environ. Sci., 5 (2012) 9511−9519.
  30. S. Porada, B.B. Sales, H.V.M. Hamelers, P.M. Biesheuvel, Water desalination with wires, J. Phys. Chem. Lett., 3 (2012) 1613−1618.
  31. S.-i. Jeon, H.-r. Park, J.-g. Yeo, S.C. Yang, C.H. Cho, M.H. Han, D.K. Kim, Desalination via a new membrane capacitive deionization process utilizing flow-electrodes, Energy Environ. Sci., 6 (2013) 1471−1475.
  32. K.B. Hatzell, E. Iwama, A. Ferris, B. Daffos, K. Urita, T. Tzedakis, F. Chauvet, P.-L. Taberna, Y. Gogotsi, P. Simon, Capacitive deionization concept based on suspension electrodes without ion exchange membranes, Electrochem. Commun., 43 (2014) 18−21.
  33. S. Porada, D. Weingarth, H.V.M. Hamelers, M. Bryjak, V. Presser, P.M. Biesheuvel, Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation, J. Mater. Chem. A, 2 (2014) 9313−9321.
  34. A. Rommerskirchen, Y. Gendel, M. Wessling, Single module flow-electrode capacitive deionization for continuous water desalination, Electrochem. Commun., 60 (2015) 34−37.
  35. S.-i. Jeon, J.-g. Yeo, S.C. Yang, J.Y. Choi, D.K. Kim, Ion storage and energy recovery of a flow-electrode capacitive deionization process, J. Mater. Chem. A, 2 (2014) 6378–6383.
  36. S.C. Yang, J.Y. Choi, J.-g. Yeo, S.-i. Jeon, H.-r. Park, D.K. Kim, Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration, Environ. Sci. Technol., 50 (2016) 5892–5899.
  37. H.-r. Park, J.Y. Choi, S.C. Yang, S.J. Kwak, S.-i. Jeon, M.H. Han, D.K. Kim, Surface-modified spherical activated carbon for high carbon loading and its desalting performance in flow-electrode capacitive deionization, R. Soc. Chem., 6 (2016) 69720–69727.
  38. S.C. Yang, S.-i. Jeon, H. Kim, J. Choi, J.-g. Yeo, H.-r. Park, D.K. Kim, Stack design and operation for scaling up the capacity of flow-electrode capacitive deionization technology, ACS Sustainable Chem. Eng., 4 (2016) 4174–4180.
  39. Y.Y. Cho, K.S. Lee, S.C. Yang, J. Choi, H.-r. Park, D.K. Kim, A novel three-dimensional desalination system utilizing honeycomb-shaped lattice structures for flow-electrode capacitive deionization, Energy Environ. Sci., 10 (2017) 1746–1750.
  40. K. Vafai, Handbook of Porous Media, 3rd ed., CRC Press Taylor & Francis Group, Boca Raton, Florida, 2015.