References

  1. J.-L. Liu, M.-H. Wong, Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China, Environ. Int., 59 (2013) 208–224.
  2. Y.F. Velázquez, P.M. Nacheva, Removal of pharmaceuticals from municipal wastewater by aerated submerged attached growth reactors, J. Environ. Manage., 192 (2017) 243–253.
  3. L. Feng, E.D. Van Hullebusch, M.A. Rodrigo, G. Esposito, M.A. Oturan, Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review, Chem. Eng. J., 228 (2013) 944–964.
  4. E. Chang, T.-Y. Liu, C.-P. Huang, C.-H. Liang, P.-C. Chiang, Degradation of mefenamic acid from aqueous solutions by the ozonation and O3/UV processes, Sep. Purif. Technol., 98 (2012) 123–129.
  5. A. Eslami, M.M. Amini, A.R. Yazdanbakhsh, N. Rastkari, A. Mohseni-Bandpei, S. Nasseri, E. Piroti, A. Asadi, Occurrence of non-steroidal anti-inflammatory drugs in Tehran source water, municipal and hospital wastewaters, and their ecotoxicological risk assessment, Environ. Monit. Assess., 187 (2015) 734.
  6. H. Abdolmohammad-Zadeh, F. Morshedzadeh, E. Rahimpour, Trace analysis of mefenamic acid in human serum and pharmaceutical wastewater samples after pre-concentration with Ni–Al layered double hydroxide nano-particles, J. Pharm. Anal., 4 (2014) 331–338.
  7. J.J. Werner, K. McNeill, W.A. Arnold, Environmental photodegradation of mefenamic acid, Chemosphere, 58 (2005) 1339–1346.
  8. R. Colombo, T.C. Ferreira, R.A. Ferreira, M.R. Lanza, Removal of Mefenamic acid from aqueous solutions by oxidative process: optimization through experimental design and HPLC/UV analysis, J. Environ. Manage., 167 (2016) 206–213.
  9. D. Kanakaraju, B.D. Glass, M. Oelgemöller, Advanced oxidation process-mediated removal of pharmaceuticals from water: a review, J. Environ. Manage., 219 (2018) 189–207.
  10. K. Ikehata, N. Jodeiri Naghashkar, M. Gamal El-Din, Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review, Ozone Sci. Eng., 28 (2006) 353–414.
  11. S. Ghasemian, D. Nasuhoglu, S. Omanovic, V. Yargeau, Photoelectrocatalytic degradation of pharmaceutical carbamazepine using Sb-doped Sn80%-W20%-oxide electrodes, Sep. Purif. Technol., 188 (2017) 52–59.
  12. R. Banaschik, H. Jablonowski, P.J. Bednarski, J.F. Kolb, Degradation and intermediates of diclofenac as instructive example for decomposition of recalcitrant pharmaceuticals by hydroxyl radicals generated with pulsed corona plasma in water, J. Hazard. Mater., 342 (2018) 651–660.
  13. P. Duan, X. Hu, Z. Ji, X. Yang, Z. Sun, Enhanced oxidation potential of Ti/SnO2-Cu electrode for electrochemical degradation of low-concentration ceftazidime in aqueous solution: performance and degradation pathway, Chemosphere, 212 (2018) 594–603.
  14. F.C. Moreira, R.A. Boaventura, E. Brillas, V.J. Vilar, Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters, Appl. Catal., B, 202 (2017) 217–261.
  15. C. Zhang, M. Zhou, G. Ren, X. Yu, L. Ma, J. Yang, F. Yu, Heterogeneous electro-Fenton using modified iron–carbon as catalyst for 2, 4-dichlorophenol degradation: influence factors, mechanism and degradation pathway, Water Res., 70 (2015) 414–424.
  16. L. Labiadh, M.A. Oturan, M. Panizza, N.B. Hamadi, S. Ammar, Complete removal of AHPS synthetic dye from water using new electro-Fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst, J. Hazard. Mater., 297 (2015) 34–41.
  17. E. Brillas, I. Sirés, M.A. Oturan, Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry, Chem. Rev., 109 (2009) 6570–6631.
  18. B. Zhang, Y. Hou, Z. Yu, Y. Liu, J. Huang, L. Qian, J. Xiong, Three-dimensional electro-Fenton degradation of Rhodamine B with efficient Fe-Cu/kaolin particle electrodes: electrodes optimization, kinetics, influencing factors and mechanism, Sep. Purif. Technol., 210 (2019) 60–68.
  19. H. Chen, Y. Feng, N. Suo, Y. Long, X. Li, Y. Shi, Y. Yu, Preparation of particle electrodes from manganese slag and its degradation performance for salicylic acid in the three-dimensional electrode reactor (TDE), Chemosphere, 216 (2019) 281–288.
  20. F. Iranpour, H. Pourzamani, N. Mengelizadeh, P. Bahrami, H. Mohammadi, Application of response surface methodology for optimization of reactive black 5 removal by three dimensional electro-Fenton process, J. Environ. Chem. Eng., 6 (2018) 3418–3435.
  21. Z. He, C. Gao, M. Qian, Y. Shi, J. Chen, S. Song, Electro- Fenton process catalyzed by Fe3O4 magnetic nanoparticles for degradation of CI Reactive Blue 19 in aqueous solution: operating conditions, influence, and mechanism, Ind. Eng. Chem. Res., 53 (2014) 3435–3447.
  22. C. Zhang, M. Zhou, G. Ren, X. Yu, L. Ma, J. Yang, F. Yu, Heterogeneous electro-Fenton using modified iron–carbon as catalyst for 2,4-dichlorophenol degradation: Influence factors, mechanism and degradation pathway, Water Res., 70 (2015) 414–424.
  23. N. Qiao, H. Ma, M. Hu, Design of a neutral three-dimensional electro-Fenton system with various bentonite-based Fe particle electrodes: a comparative study, Mater. Res. Innov., 19 (2015) S2–137-S132–141.
  24. H.-Y. Xu, Y. Wang, T.-N. Shi, H. Zhao, Q. Tan, B.-C. Zhao, X.-L. He, S.-Y. Qi, Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: combination mechanism and affecting parameters, Front. Mater. Sci., 12 (2018) 21–33.
  25. H. Pourzamani, N. Mengelizadeh, Y. Hajizadeh, H. Mohammadi, Electrochemical degradation of diclofenac using threedimensional electrode reactor with multi-walled carbon nanotubes, Environ. Sci. Pollut. Res., 25 (2018) 24746–24763.
  26. H. Lee, H.-J. Lee, J. Jeong, J. Lee, N.-B. Park, C. Lee, Activation of persulfates by carbon nanotubes: oxidation of organic compounds by nonradical mechanism, Chem. Eng. J., 266 (2015) 28–33.
  27. X. Zhang, M. Feng, R. Qu, H. Liu, L. Wang, Z. Wang, Catalytic degradation of diethyl phthalate in aqueous solution by persulfate activated with nano-scaled magnetic CuFe2O4/MWCNTs, Chem. Eng. J., 301 (2016) 1–11.
  28. S.M. El‐Khouly, N.A. Fathy, Multi‐walled carbon nanotubes supported amorphous Fe2O3 and Ag2O–Fe2O3 as Fenton catalysts for degradation of m axilon red dye, Asia-Pac. J. Chem. Eng., 13 (2018) e2184.
  29. J. Chen, L. Zhang, T. Huang, W. Li, Y. Wang, Z. Wang, Decolorization of azo dye by peroxymonosulfate activated by carbon nanotube: radical versus non-radical mechanism, J. Hazard. Mater., 320 (2016) 571–580.
  30. L. Shen, P. Yan, X. Guo, H. Wei, X. Zheng, Three-dimensional electro-Fenton degradation of methyleneblue based on the composite particle electrodes of carbon nanotubes and nano-Fe3O4, Arabian J. Sci. Eng., 39 (2014) 6659–6664.
  31. F. Yu, Y. Chen, H. Ma, Ultrahigh yield of hydrogen peroxide and effective diclofenac degradation on a graphite felt cathode loaded with CNTs and carbon black: an electro-generation mechanism and a degradation pathway, New J. Chem., 42 (2018) 4485–4494.
  32. H. Pourzamani, Y. Hajizadeh, N. Mengelizadeh, Application of three-dimensional electro-Fenton process using MWCNTs-Fe3O4 nanocomposite for removal of diclofenac, Process Saf. Environ. Prot., 119 (2018) 271–284.
  33. I. Pouladvand, S.K. Asl, M.G. Hoseini, M. Rezvani, Technology, characterization and electrochemical behavior of Ti/TiO2–RuO2–IrO2–SnO2 anodes prepared by sol–gel process, J. Solgel Sci. Technol., 89 (2019) 553–561.
  34. F. Moradi, C. Dehghanian, Addition of IrO2 to RuO2 + TiO2 coated anodes and its effect on electrochemical performance of anodes in acid media, Prog. Nat. Sci. Mater., 24 (2014) 134–141.
  35. C.-P. Lo, G. Wang, A. Kumar, V. Ramani, TiO2–RuO2 electrocatalyst supports exhibit exceptional electrochemical stability, Appl. Catal., B, 140 (2013) 133–140.
  36. S. Kim, S.K. Choi, B.Y. Yoon, S.K. Lim, H. Park, Effects of electrolyte on the electrocatalytic activities of RuO2/Ti and Sb–SnO2/Ti anodes for water treatment, Appl. Catal., B, 97 (2010) 135–141.
  37. T. Saranya, K. Parasuraman, M. Anbarasu, K. Balamurugan, XRD, FT-IR and SEM study of magnetite (Fe3O4) nanoparticles prepared by hydrothermal method, Nano Vision, 5 (2015) 149–154.
  38. C. García-Gómez, P. Drogui, F. Zaviska, B. Seyhi, P. Gortáres-Moroyoqui, G. Buelna, C. Neira-Sáenz, M. Estrada-Alvarado, R. Ulloa-Mercado, Experimental design methodology applied to electrochemical oxidation of carbamazepine using Ti/PbO2 and Ti/BDD electrodes, J. Electroanal. Chem., 732 (2014) 1–10.
  39. H. Yue, L. Xue, F. Chen, Efficiently electrochemical removal of nitrite contamination with stable RuO2-TiO2/Ti electrodes, Appl. Catal., B, 206 (2017) 683–691.
  40. M. Panizza, M.A. Oturan, Degradation of Alizarin Red by electro-Fenton process using a graphite-felt cathode, Electrochim. Acta, 56 (2011) 7084–7087.
  41. H. Mohammadi, B. Bina, A. Ebrahimi, A novel three-dimensional electro-Fenton system and its application for degradation of anti-inflammatory pharmaceuticals: modeling and degradation pathways, Process Saf. Environ. Prot., 117 (2018) 200–213.
  42. Q. Tang, D. Wang, D. Yao, C. Yang, Y. Sun, Heterogeneous electro-Fenton oxidation of p-nitrophenol with a reusable fluffy clump steel wire, Desal. Wat. Treat., 57 (2016) 15475–15485.
  43. B. Manu, R. Mahamood, Degradation kinetics of diclofenac in water by Fenton’s oxidation, J. Sustain. Energy Environ., 3 (2012) 173–176.
  44. P. Nidheesh, R. Gandhimathi, S. Velmathi, N. Sanjini, Magnetite as a heterogeneous electro Fenton catalyst for the removal of Rhodamine B from aqueous solution, RSC Adv., 4 (2014) 5698–5708.
  45. Z. Es› haghzade, E. Pajootan, H. Bahrami, M. Arami, Facile synthesis of Fe3O4 nanoparticles via aqueous based electro chemical route for heterogeneous electro-Fenton removal of azo dyes, J. Taiwan Inst. Chem. Eng., 71 (2017) 91–105.
  46. A. Özcan, A.A. Özcan, Y. Demirci, E. Şener, Preparation of Fe2O3 modified kaolin and application in heterogeneous electro-catalytic oxidation of enoxacin, Appl. Catal., B, 200 (2017) 361–371.
  47. H. Pourzamani, H. Mohammadian, N. Niknam, B. Neamati, R. Rahimi, N. Mengelizadeh, Comparison of electrochemical advanced oxidation processes for removal of ciprofloxacin from aqueous solutions, Desal. Wat. Treat., 113 (2018) 307–318.
  48. A. Shirzadi, A. Nezamzadeh-Ejhieh, Enhanced photocatalytic activity of supported CuO–ZnO semiconductors towards the photodegradation of mefenamic acid aqueous solution as a semi real sample, J. Mol. Catal. A-Chem., 411 (2016) 222–229.
  49. X. Wang, K. Zhu, X. Ma, Z. Sun, X. Hu, Degradation of diuron by heterogeneous electro-Fenton using modified magnetic activated carbon as the catalyst, RSC Adv., 8 (2018) 19971–19978.
  50. C. Zhang, M. Zhou, X. Yu, L. Ma, F. Yu, Modified iron-carbon as heterogeneous electro-Fenton catalyst for organic pollutant degradation in near neutral pH condition: characterization, degradation activity and stability, Electrochim. Acta, 160 (2015) 254–262.
  51. Riyanto, A. Anshori, Electroanalysis of mefenamic acid using platinum powder composite microelectrode (PPCM), Anal. Bioanal. Chem., 6 (2014) 159–169.
  52. W.N.A.W. Khalit, K.S. Tay, Aqueous chlorination of mefenamic acid: kinetics, transformation by-products and ecotoxicity assessment, Environ. Sci. Process. Impact., 18 (2016) 555–561.