References

  1. A. Pyka, Transformation of Economic Systems: The Bioeconomy Case, In: Knowledge-Driven Developments in the Bioeconomy, Springer, Cham, 2017, pp. 3–16.
  2. J.L. Campos, D. Valenzuela-Heredia, A. Pedrouso, A. Val del Rio, M. Belmonte, A. Mosquera-Corral, Greenhouse gases emissions from wastewater treatment plants: minimization, treatment, and prevention, J. Chem., 2016 (2016) 12p.
  3. UNFCCC, Synthesis Report on the Aggregate Effect of the Intended Nationally Determined Contributions, Conference of the Parties, United Nations, 2015.
  4. H. Awad, M.G. Alalm, H.K. El-Etriby, Environmental and cost life cycle assessment of different alternatives for improvement of wastewater treatment plants in developing countries, Sci. Total Environ., 660 (2019) 57–68.
  5. A.M. Santos, A.M. Santos, I.A. Severo, M.I. Queiroz, L.Q. Zepka, E. Jacob-Lopes, Nutrient Cycling in Wastewater Treatment Plants by Microalgae-Based Processes, S.N. Barton, Ed., Industrial Waste: Management, Assessment, and Environmental Issues, Nova Science Publishers, Inc., New York, 2016, pp. 41–63.
  6. L.M. González-González, D.F. Correa, S. Ryan, P.D. Jensen, S. Pratt, P.M. Schenk, Integrated biodiesel and biogas production from microalgae: towards a sustainable closed-loop through nutrient recycling, Renewable Sustainable Energy Rev., 82 (2018) 1137–1148.
  7. A. Padilla-Rivera, L.P. Güereca, A proposal metric for sustainability evaluations of wastewater treatment systems (SEWATS), Ecol. Indic., 103 (2019) 22–33.
  8. B. Agarski, I. Budak, D. Vukelic, J. Hodolic, Fuzzy multi-criteriabased impact category weighting in life cycle assessment, J. Cleaner Prod., 112 (2016) 3256–3266.
  9. M.C. Deprá, E. Jacob-Lopes, L.Q. Zepka, Life Cycle Assessment of Biofuels from Microalgae, E. Jacob-Lopes, L.Q. Zepka, M.I. Queiroz, Eds., Energy from Microalgae, 1st ed., Springer, Switzerland, 2018, pp. 141–155.
  10. A.M. Santos, G.R. Roso, C.R. Menezes, M.I. Queiroz, L.Q. Zepka, E. Jacob-Lopes, The bioeconomy of microalgal heterotrophic bioreactors applied to agroindustrial wastewater treatment, Desal. Wat. Treat, 64 (2017) 12–20.
  11. A.M. Santos, A.M. Santos, R.B. Sartori, L.Z. Queiroz, J.S. Barin, E. Jacob-Lopes, Nutrient cycling in meat processing industry by microalgae-based processes, Desal. Wat. Treat., 100 (2017b) 91–99.
  12. A.M. Santos, A.M. Santos, R.B. Sartori, L.Z. Queiroz, E. Jacob-Lopes, Influence of poultry and swine blood shocks on the performance of microalgal heterotrophic bioreactor, Desal. Wat. Treat., 114 (2018) 128–134.
  13. R. Rippka, J. Deruelles, J.B. Waterbury, M. Herdman, R.Y. Stanier, Generic assignments, strain histories and properties of pure cultures of cyanobacteria, Microbiology, 111 (1979) 1–61.
  14. APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, D.C., 2005.
  15. ISO 14040, International Standard, Environmental Management–Life Cycle Assessment – Principles and Framework, International Organisation for Standardization, Geneva, Switzerland, 2006.
  16. L. Xu, D.W.F. Brilman, J.A.M. Withag, G. Brem, S. Kersten, Assessment of a dry and a wet route for the production of biofuels from microalgae: energy balance analysis, Bioresour. Technol., 8 (2011) 5113–5122.
  17. N. Pragya, K. Panved, Life cycle assessment of green diesel production from microalgae, Renewable Energy, 86 (2016) 623–632.
  18. V.O. Adesanya, E. Cadena, S.A. Scott, A.G. Smit, Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system, Bioresour. Technol., 163 (2014) 343–355.
  19. E. Jacob-Lopes, A.M. Santos, D.B. Rodrigues, M.C.Y. Lui, C. Souza, D. Prudente, L.Q. Zepka, Bioprocess of Conversion of Hybrid Wastewaters, Heterotrophic Bioreactor, Bioproducts, and Their Uses, Brazilian Patent Application BR 10 2013 020490-0 A2, 2013.
  20. E.G. Bligh, W.J. Dyer, A rapid method of total lipid extraction and purification, Can. J. Biochem. Phys., 37 (1959) 911–917.
  21. Y. Peralta-Ruiz, A.D. González-Delgado, V. Kafarov, Evaluation of alternatives for microalgae oil extraction based on exergy analysis, Appl. Energy, 101 (2013) 226–236.
  22. G.R. Roso, A.M. Santos, M.I. Queiroz, J.S. Barin, L.Q. Zepka, E. Jacob-Lopes, The econometrics of production of bulk oil and lipid extracted algae in an agroindustrial biorefinery, Curr. Biotechnol., 4 (2015) 547–553.
  23. O. Jorqueira, A. Kiperstok, E.A. Sales, M. Embirucu, M.L. Ghirardi, Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors, Bioresour. Technol., 101 (2010) 1406–1413.
  24. A.Y. Hoekstra, M.M. Mekonnen, The water footprint of humanity, Proc. Nat. Acad. Sci., 109 (2012) 3232–3237.
  25. CONAMA, Resolução n° 357/2005, Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, in: Conselho Nacional do Meio Ambiente, Ed., Brasília, BR, 2005.
  26. Council Directive, Council Directive 91/271/EEC of 21 May 1991 Concerning Urban Waste-water Treatment, Official Journal L 135, European Union, 1991, pp. 40–52.
  27. B. Laratte, B. Guillaume, J. Kim, B. Birregah, Modeling cumulative effects in life cycle assessment: the case of fertilizer in wheat production contributing to the global warming potential, Sci. Total Environ., 481 (2014) 588–595.
  28. M.Z. Hauschild, H. Wenzel, M. Hauschild, Environmental Assessment of Products: Scientific Background, Vol. 2, Springer Science & Business Media, London, 1997.
  29. M.Z. Hauschild, H. Wenzel, Environmental Assessment of Products, Vol. 2, Kluwer Academic Publishers, Chapman & Hall, Hingham, United Kingdom, 1998.
  30. European Commission - Joint Research Centre - Institute for Environment and Sustainability: International Reference Life Cycle Data System (ILCD) Handbook – General guide for Life Cycle Assessment - Detailed guidance, First edition March 2010, EUR 24708 EN, Publications Office of the European Union, Luxembourg, 2010.
  31. S. Sala, E. Crenna, M. Secchi, R. Pant, Global Normalisation Factors for the Environmental Footprint and Life Cycle Assessment, EUR (28984), Publications Office of the European Union, Publications Office of the European Union, Luxembourg, 2017, ISBN 978-92-79-77213-9, doi:10.2760/88930, JRC109878.
  32. M.R. Tredici, N. Bassi, M. Prussi, N. Biondi, L. Rodolfi, G.C. Zittelli, G. Sampietro, Energy balance of algal biomass production in a 1-ha “Green Wall Panel” plant: how to produce algal biomass in a closed reactor achieving a high net energy ratio, Appl. Energy, 154 (2015) 1103–1111.
  33. L. Lardon, A. Helias, B. Sialve, J.P. Steyer, O. Bernard, Life-cycle assessment of biodiesel production from microalgae, Environ. Sci. Technol., 43 (2009) 6475–6481.
  34. M.O.P. Fortier, G.W. Roberts, S.M. Stagg-Williams, B.S. Sturm, Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae, Appl. Energy, 122 (2014) 73–82.
  35. M. Morales, P. Collet, L. Lardon, A. Hélias, J.-P. Steyer, O. Bernard, Chapter 20 - Life-cycle assessment of microalgalbased biofuel, In: Biofuels from Algae Sustainable Platform for Fuels, Chemicals and Remediation Biomass, Biofuels, Biochemicals, 2019, pp. 507–550.
  36. C. Zamalloa, E. Vulsteke, J. Albrecht, W. Verstraete, The technoeconomic potential of renewable energy through the anaerobic digestion of microalgae, Bioresour. Technol., 102 (2011) 1149–1158.
  37. A.M. Santos, A.M. Santos, L.Q. Zepka, E. Jacob-Lopes, Downstream Recovery of Microalgal Bioproducts with Highlights on Biorefineries, In: Biorefineries: Concepts, Advancements, and Research, Nova Science Publishers, Inc., New York, 2017, pp. 1–38.
  38. P.D. Patil, V.G. Gude, A. Mannarswamy, S. Deng, P. Cooke, S. Munson-McGee, I. Rhodes, P. Lammers, N. Nirmalakhandan, Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions, Bioresour. Technol., 102 (2011) 118–122.
  39. A. Sathish, R.C. Sims, Biodiesel from mixed culture algae via a wet lipid extraction procedure, Bioresour. Technol., 118 (2012) 643–647.
  40. A.M. Santos, M.C. Deprá, A.M. Santos, L.Q. Zepka, E. Jacob- Lopes, Aeration energy requirements in microalgal heterotrophic bioreactors applied to agroindustrial wastewater treatment, Curr. Biotechnol., 5 (2015) 249–254.
  41. M. Von Sperling, R.F. Gonçalves, Lodo de esgotos: características e produção. In: C.V. Andreoli, M. Von Sperling, F. Fernandes, Lodo de esgotos: tratamento e disposição final, Belo Horizonte: Departamento de Engenharia Sanitária e Ambiental, UFMG, Curitiba: SANEPAR, 6 (2001) 17–67.
  42. B.G. Subhadra, M. Edwards, Coproduct market analysis and water footprint of simulated commercial algal biorefineries, Appl. Energy, 88 (2011) 3515–3523.
  43. A.Y. Hoekstra, The global dimension of water governance: why the river basin approach is no longer sufficient and why cooperative action at global level is needed, Water, 3 (2011) 21–46.
  44. P.R. Van Oel, A.Y. Hoekstra, Towards quantification of the water footprint of paper: a first estimate of its consumptive component, Water Resour. Manage., 26 (2012) 733–749.
  45. J. Clere, True Cost of Water: Monetization of Water Risks, Shared Value Creation, and Local Acceptability of Extractive Projects, J. Field Actions: Field Actions Science Reports, (Special Issue 14), (2016), http://journals.openedition.org/factsreports/4069.
  46. M. Plouviez, A. Shilton, M.A. Packer, B. Guieysse, Nitrous oxide emissions from microalgae: potential pathways and significance, J. Appl. Phycol., 31 (2019) 1–8.
  47. EC, European Commission Environment, 2019. https://ec.europa.eu/ [accessed June 2019].
  48. IEA International Energy Agency, CO2 Emissions from Fuel Combustion Highlights 2018, International Energy Agency, 2018. http://www.indiaenvironmentportal.org.in/files/file/CO2_Emissions_from_Fuel_Combustion_2018_Highlights.pdf [accessed June 2019].
  49. US Energy Information Administration, Ed., Annual Energy Outlook 2019 with Projections to 2050, Government Printing Office, 2019.
  50. C.Q. Arita, J.J. Sheehan, T.H. Bradley, Life cycle net energy and greenhouse gas emissions of photosynthetic cyanobacterial biorefineries: challenges for industrial production of biofuels, Algal Res., 26 (2017) 445–452.
  51. C.Q. Arita, C. Peebles, T.H. Bradley, Scalability of combining microalgae-based biofuels with wastewater facilities: a review, Algal Res., 9 (2015) 160–169.
  52. F. Gao, Y.-Y. Peng, C. Li, W. Cui, Z.-H. Yang, G.-M. Zeng, Coupled nutrient removal from secondary effluent and algal biomass production in membrane photobioreactor (MPBR): effect of HRT and long-term operation, Chem. Eng. J., 335 (2018) 169–175.
  53. T. Yan, Y. Ye, H. Ma, Y. Zhang, W. Guo, B. Du, Q. Wei, D. Wei, H. H. Ngo, A critical review on membrane hybrid system for nutrient recovery from wastewater, Chem. Eng. J., 348 (2018) 143–156.
  54. USDA, U.S. Department of Agriculture, 2019. https://www. usda.gov/ [accessed June 2019].
  55. Y. Zhang, A. Kendall, Effects of system design and co-product treatment strategies on the life cycle performance of biofuels from microalgae, J. Cleaner Prod., 230 (2019) 536–546.
  56. J.O. Reuss, D.W. Johnson, Acid Deposition and the Acidification of Soils and Waters, Vol. 59, Springer Science & Business Media, New York, 2012.
  57. M. Z. Hauschild, M. Goedkoop, J. Guinée, R. Heijungs, M. Huijbregts, O. Jolliet, S. Sala, Identifying best existing practice for characterization modeling in life cycle impact assessment, Int. J. Life Cycle Assess., 18 (2013) 683–697.
  58. S. Bilgen, Structure and environmental impact of global energy consumption, Renewable Sustainable Energy Rev., 38 (2014) 890–902.
  59. S. Fazio, V. Castellani, S. Sala, E.M. Schau, M. Secchi, L. Zampori, Supporting Information to the Characterisation Factors of Recommended EF Life Cycle Impact Assessment Methods, EUR 28888 EN, European Commission, Ispra, 2018.
  60. J.C. Pasqualino, M. Meneses, F. Castells, Life cycle assessment of urban wastewater reclamation and reuse alternatives, J. Ind. Ecol., 15 (2011) 49–63.
  61. E. Buonocore, S. Mellino, G. De Angelis, G. Liu, S. Ulgiati, Life cycle assessment indicators of urban wastewater and sewage sludge treatment, Ecol. Indic., 94 (2018) 13–23.
  62. M. Garfí, L. Flores, I. Ferrer, Life cycle assessment of wastewater treatment systems for small communities: activated sludge, constructed wetlands and high rate algal ponds, J. Cleaner Prod., 161 (2017) 211–219.
  63. Y. Li, X. Luo, X. Huang, D. Wang, W. Zhang, Life cycle assessment of a municipal wastewater treatment plant: a case study in Suzhou, China, J. Cleaner Prod., 57 (2013) 221–227.
  64. ISO 14044 International Standard, In: Environmental Management – Life Cycle Assessment – Requirements and Guidelines, International Organisation for Standardisation, Geneva, Switzerland, 2006.
  65. C.K. Gao, H.M. Na, K.H. Song, N. Dyer, F. Tian, Q.J. Xu, Y.H. Xing, Environmental impact analysis of power generation from biomass and wind farms in different locations, Renewable Sustainable Energy Rev., 102 (2019) 307–317.
  66. D. Gielen, F. Boshell, D. Saygin, M.D. Bazilian, N. Wagner, R. Gorini, The role of renewable energy in the global energy transformation, Energy Strategy Rev., 24 (2019) 38–50.
  67. J. Chen, Y. Wu, C. Xu, M. Song, X. Liu, Global non-fossil fuel consumption: driving factors, disparities, and trends, Manage. Decis., 57 (2019) 791–810.