References

  1. G. Gwak, D.I. Kim, S. Hong, New industrial application of forward osmosis (FO): precious metal recovery from printed circuit board (PCB) plant wastewater, J. Membr. Sci., 552 (2018) 234–242.
  2. Y.C. Kuan, I.H. Lee, J.M. Chern, Heavy metal extraction from PCB wastewater treatment sludge by sulfuric acid, J. Hazard. Mater., 177 (2010) 881–886.
  3. X. Fengchun, L. Haiying, M. Yang, L. Chuncheng, C. Tingting, H. Zhiyuan, Y. Gaoqing, The ultrasonically assisted metals recovery treatment of printed circuit board waste sludge by leaching separation, J. Hazard. Mater., 170 (2009) 430–435.
  4. P.K. Choubey, R. Panda, M.K. Jha, J.C. Lee, D.D. Pathak, Recovery of copper and recycling of acid from the leach liquor of discarded printed circuit boards (PCBs), Sep. Purif. Technol., 156 (2015) 269–275.
  5. P. Liu, T. Yan, J. Zhang, L. Shi, D. Zhang, P. Liu, T. Yan, J. Zhang, L. Shi, D. Zhang, Separation and recovery of heavy metal ions and salt ions from wastewater by 3D graphene-based asymmetric electrodes: via capacitive deionization, J. Mater. Chem. A, 5 (2017) 14748–14757.
  6. T.J. Afolabi, A.O. Alade, M.O. Jimoh, I.O. Fashola, Heavy metal ions adsorption from dairy industrial wastewater using activated carbon from milk bush kernel shell, Desal. Water Treat., 57 (2015) 1–13.
  7. A. Imyim, C. Thanacharuphamorn, A. Saithongdee, F. Unob, V. Ruangpornvisuti, Simultaneous removal of Ag(I), Cd(II), Cr(III), Ni(II), Pb(II), and Zn(II) from wastewater using humic acid-coated aminopropyl silica gel, Desal. Water Treat., (2015) 1–10.
  8. H.Y. Yen, P.L. Chen, Adsorption of Cd(II) from wastewater using spent coffee grounds by Taguchi optimization, Desal. Water Treat., 57 (2015) 1–8.
  9. J.C. Liu, T.H. Kao, Extraction of Cu and Pb from printed circuit board sludge using ammonia solutions, Water Sci. Technol., 47 (2003) 167–172.
  10. Y.J. Tu, C.K. Chang, C.F. You, J.C. Lou, Recycling of Cu powder from industrial sludge by combined acid leaching, chemical exchange, and ferrite process, J. Hazard. Mater., 181 (2010) 981–985.
  11. F. Xie, T. Cai, M. Yang, H. Li, C. Li, Z. Huang, G. Yuan, Recovery of Cu and Fe from printed circuit board waste sludge by ultrasound: evaluation of an industrial application, J. Cleaner Prod., 17 (2009) 1494–1498.
  12. C.H. Wu, C.Y. Kuo, S.L. Lo, Recovery of heavy metals from industrial sludge using various acid extraction approaches, Water Sci. Technol., 59 (2009) 289–293.
  13. S.Y. Chen, Q.Y. Huang, Heavy metals recovery from printed circuit board industry wastewater sludge by thermophilic bioleaching process, J. Chem. Technol. Biotechnol., 89 (2013) 158–164.
  14. S. Babel, D.D.M. Dacera, Heavy metal removal from contaminated sludge for land application: a review, Waste Manage., 26 (2006) 988–1004.
  15. J.X. Zeng, H.Q. Ye, Z.Y. Hu, Application of the hybrid complexation-ultrafiltration process for metal ion removal from aqueous solutions, J. Hazard. Mater., 161 (2009) 1491–1498.
  16. G. Borbély, E. Nagy, Removal of zinc and nickel ions by complexation-membrane filtration process from industrial wastewater, Desalination, 240 (2009) 218–226.
  17. Y. Huang, D. Wu, X. Wang, H. Wei, D. Lawless, X. Feng, Removal of heavy metals from water using polyvinylamine by polymer-enhanced ultrafiltration and flocculation, Sep. Purif. Technol., 158 (2016) 124–136.
  18. R.S. Juang, C.H. Chiou, Ultrafiltration rejection of dissolved ions using various weakly basic water-soluble polymers, J. Membr. Sci., 177 (2000) 207–214.
  19. Y.R. Qiu, L.J. Mao, Removal of heavy metal ions from aqueous solution by ultrafiltration assisted with copolymer of maleic acid and acrylic acid, Desalination, 329 (2013) 78–85.
  20. R. Camarillo, Á. Pérez, P. Cañizares, A.D. Lucas, Removal of heavy metal ions by polymer enhanced ultrafiltration: batch process modeling and thermodynamics of complexation reactions, Desalination, 286 (2012) 193–199.
  21. M.A. Barakat, E. Schmidt, Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater, Desalination, 256 (2010) 90–93.
  22. J. Müslehiddinoğlu, Y. Uludağ, H.Ö. Özbelge, L. Yilmaz, Effect of operating parameters on selective separation of heavy metals from binary mixtures via polymer enhanced ultrafiltration, J. Membr. Sci., 140 (1998) 251–266.
  23. R. Molinari, P. Argurio, Arsenic removal from water by coupling photocatalysis and complexation-ultrafiltration processes: a preliminary study, Water Res., 109 (2017) 327–336.
  24. X.Z. Jian, Q.Y. Hong, N.D. Huang, J.F. Liu, F.Z. Li, Selective separation of Hg(II) and Cd(II) from aqueous solutions by complexation–ultrafiltration process, Chemosphere, 76 (2009) 706–710.
  25. P. Cañizares, A. Pérez, R. Camarillo, R. Mazarro, Simultaneous recovery of cadmium and lead from aqueous effluents by a semicontinuous laboratory-scale polymer enhanced ultrafiltration process, J. Membr. Sci., 320 (2008) 520–527.
  26. R. Molinari, P. Argurio, T. Poerio, G. Gullone, Selective separation of copper(II) and nickel(II) from aqueous systems by polymer assisted ultrafiltration, Desalination, 200 (2006) 728–730.
  27. J. Llanos, R. Camarillo, Á. Pérez, P. Cañizares, Polymer supported ultrafiltration as a technique for selective heavy metal separation and complex formation constants prediction, Sep. Purif. Technol., 73 (2010) 126–134.
  28. J. Gao, Y. Qiu, M. Li, H. Le, Separation of valuable metals in spent LiNi0.46Co0.2Mn0.34O2 battery by shear-induced dissociation coupling with ultrafiltration, Hydrometallurgy, 189 (2019) 1–7.
  29. Q. Zhang, J. Gao, Y. Qiu, Removal of Ni(II) and Cr(III) by complexation-ultrafiltration using rotating disk membrane and the selective separation by shear-induced dissociation, Chem. Eng. Process., 135 (2019) 236–244.
  30. S. Tang, Y. Qiu, Removal of copper(II) ions from aqueous solutions by complexation–ultrafiltration using rotating disk membrane and the shear stability of PAA-Cu complex, Chem. Eng. Res. Des., 136 (2018) 712–720.
  31. H. Le, Y.Qiu. S. Tang. Qiu, Removal of Sn2+ using copolymer of maleic acid-acrylic acid (PMA) by complexation–ultrafiltration and regeneration of PMA using shear-induced dissociation and ultrafiltration, Desal. Water Treat., 160 (2019) 41–49.
  32. J. Xu, S. Tang, Y. Qiu, Pretreatment of poly (acrylic acid) sodium by continuous diafiltration and time revolution of filtration potential, J. Cent. South Univ., 26 (2019) 577–586.
  33. C. Ming, K. Shafer-Peltier, S. Randtke, E. Peltier, Competitive association of cations with poly(sodium 4-styrenesulfonate) (PSS) and heavy metal removal from water by PSS-assisted ultrafiltration, Chem. Eng. J., 344 (2018) 155–164.
  34. S.I. Kadioglu, L. Yilmaz, N. Aydogan, H.O. Ozbelge, Removal of heavy metals from multicomponent metal mixtures by polymer enhanced ultrafiltration: effects of pH, ionic strength, and conformational changes in polymer structure, Sep. Sci. Technol., 45 (2010) 1363–1373.
  35. J. Shao, Q. Shu, J. Davidson, W. Li, Y. He, H.S. Zhou, Recovery of nickel from aqueous solutions by complexation-ultrafiltration process with sodium polyacrylate and polyethylenimine, J. Hazard. Mater., 244–245 (2013) 472–477.
  36. R. Bouzerar, M.Y. Jaffrin, L.H. Ding, P. Paullier, Influence of geometry and angular velocity on performance of a rotating disk filter, AIChE J., 46 (2000) 257–265.
  37. H. Llerena-Chavez, F. Larachi, Analysis of flow in rotating packed beds via CFD simulations—dry pressure drop and gas flow maldistribution, Chem. Eng. Sci., 64 (2009) 2113–2126.
  38. M.Y. Jaffrin, Dynamic shear-enhanced membrane filtration: a review of rotating disks, rotating membranes and vibrating systems, J. Membr. Sci., 324 (2008) 7–25.
  39. K.J. Hwang, S.E. Wu, Disk structure on the performance of a rotating-disk dynamic filter: a case study on microalgae microfiltration, Chem. Eng. Res. Des., 94 (2015) 44–51.
  40. S. Tang, Y. Qiu, Removal of Zn(II) by complexation–ultrafiltration using rotating disk membrane and the shear stability of PAA-Zn complex, Korean J. Chem. Eng., 35 (2018) 2078–2085.
  41. F. Ellouze, B. Seantier, N.B. Amar, A. Deratani, Selective separation of α- and β-cyclodextrins by complexation/ultrafiltration using supramolecular host-guest interaction, Sep. Purif. Technol., 204 (2018) 226–233.