References

  1. M. Tuzen, A. Sari, T.A. Saleh, Response surface optimization, kinetic and thermodynamic studies for effective removal of Rhodamine B by magnetic AC/CeO2 nanocomposite, J. Environ. Manage., 206 (2018) 170–177.
  2. S. Kaur, S. Rani, R.K. Mahajan, M. Asif, V.K. Gupta, Synthesis and adsorption properties of mesoporous material for the removal of dye safranin: kinetics, equilibrium, and thermodynamics, J. Ind. Eng. Chem., 22 (2015) 19–27.
  3. W.H. Li, Q.Y. Yue, B.-Y. Gao, Z.-H. Ma, Y.-J. Li, H.-X. Zhao, Preparation, and utilization of sludge-based activated carbon for the adsorption of dyes from aqueous solutions, Chem. Eng. J., 171 (2011) 320–327.
  4. M. Ghaedi, H. Khajesharifi, A. Hemmati Yadkuri, M. Roosta, R. Sahraei, A. Daneshfar, Cadmium hydroxide nanowire loaded on activated carbon as an efficient adsorbent for removal of bromocresol green, Spectrochim. Acta, Part A, 86 (2012) 62–68.
  5. A.M.M. Vargas, A.L. Cazetta, M.H. Kunita, T.L. Silva, V.C. Almeid, Adsorption of Methylene blue on activated carbon produced from flamboyant pods (Delonix regia): study of adsorption isotherms and kinetic models, Chem. Eng. J., 168 (2011) 722–730.
  6. A.S. Franca, L.S. Oliveira, M.E. Ferreira, Kinetics and equilibrium studies of Methylene blue adsorption by spent coffee grounds, Desalination, 249 (2009) 267–272.
  7. K.M. Shah, Handbook of Synthetic Dyes and Pigments, 2nd ed., Multitech Publishing Co., India, 1998.
  8. S.A. Abo-El-Enein, M.A. Eissa, A.A. Diafullah, M.A. Rizk, F.M. Mohamed, Removal of some heavy metals ions from wastewater by copolymer of iron and aluminum impregnated with active silica derived from rice husk ash, J. Hazard. Mater., 172 (2009) 574–579.
  9. S.A. Abo-El-Enein, M.A. Eissa, A.A. Diafullah, M.A. Rizk, F.M. Mohamed, Utilization of a low-cost agro-residue for production of coagulant aids and their applications, J. Hazard. Mater., 186 (2011) 1200–1205.
  10. F.M. Mohamed, A.M. kamal, K.A. Alfalous, Recycling of Al(III) from solid waste as alum and alum derivatives and their applications in water and wastewater treatment, Egypt. J. Aquat. Biol. Fish., 23 (2019) 135–146.
  11. N. Mohammadi, H. Khani, V.K. Gupta, E. Amereh, S. Agarwal, Adsorption process of Methyl orange dye onto mesoporous carbon material-kinetic and thermodynamic studies, J. Colloid Interface Sci., 362 (2011) 457–62.
  12. S. Chen, J. Zhang, C.L. Zhang, Q.Y. Yue, Y. Li, Equilibrium and kinetic studies of Methyl orange and Methyl violet adsorption on activated carbon derived from Phragmites australis, J. Desal., 252 (2010) 149–156.
  13. T.A. Saleh., V.K. Gupta, Photo-catalyzed degradation of hazardous dye Methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide, J. Colloid Interface Sci., 371 (2012) 101–106.
  14. Y. Bai, D. Lin, F. Wu, Z. Wang, B. Xing, Adsorption of triton X-series surfactants and its role in stabilizing multi-walled carbon nanotube suspensions, Chemosphere, 79 (2010) 362–367.
  15. L. Ji, Y. Shao, Z. Xu, S. Zheng, D. Zhu, Adsorption of mono aromatic compounds and pharmaceutical antibiotics on carbon nanotubes activated by KOH etching, Environ. Sci. Technol., 44 (2010) 6429–6436.
  16. G.D. Sheng, D.D. Shao, X.M. Ren, X.Q. Wang, J.X. Li, Y.X. Chen, X.K. Wang, Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multi-walled carbon nanotubes, J. Hazard. Mater., 178 (2010) 505–516.
  17. G.C. Chen, X.Q. Shan, Y.S. Wang, Z.G. Pei, X.E. Shen, B. Wen, G.E. Owens, Effects of copper, lead, and cadmium on the sorption and desorption of atrazine onto and from carbon nanotubes, Environ. Sci. Technol., 42 (2008) 8297–8302.
  18. H. Yan, A. Gong, H. He, S. Zhou, W. Wei, L. Lv, Adsorption of microcystins by carbon nanotubes, Chemosphere, 62 (2006) 142–148.
  19. C. Lu, Y.L. Chung, K.F. Chang, Adsorption of trihalomethanes from water with carbon nanotubes, Water Res., 39 (2005) 1183–1189.
  20. X. Wang, S. Tao, B. Xing, Sorption, and competition of aromatic compounds and humic acid on multi-walled carbon nanotubes, Environ. Sci. Technol., 43 (2009) 6214–6219.
  21. A.A. Elzain, M.R. El-Aassar, F.H. Hashem, F.M. Mohamed, A.S. Ali, Removal of methylene dye using composites of poly (styrene-co-acrylonitrile) nanofibers impregnated with adsorbent materials, J. Mol. Liq., 291 (2019) 111335.
  22. H. Aysan, S. Edebali, C. Ozdemir, M.C. Karakaya, N. Karakaya, Use of chabazite, a naturally abundant zeolite, for the investigation of the adsorption kinetics and mechanism of Methylene blue dye, J. Microporous Mesoporous Mater., 235 (2016) 78–86.
  23. T. Ngulube, J.R. Gumbo, V. Masindi, A. Maity, An update on synthetic dyes adsorption onto clay-based minerals: a state-ofart review, J. Environ. Manage., 191 (2017) 35–57.
  24. G.V. Brião, S.L. Jahn, E.L. Foletto, G.L. Dotto, Highly efficient and reusable mesoporous zeolite synthesized from a biopolymer for cationic dyes adsorption, Colloids Surf., A, 556 (2018) 43–50.
  25. X. An, C. Gao, J. Liao, X. Wu, X. Xie, Synthesis of mesoporous N-doped TiO2/ZnAl-layered double oxides nanocomposite for efficient photodegradation of Methyl orange, Mater. Sci. Semicond. Process., 34 (2015) 162–169.
  26. C. Leodopoulos, D. Doulia, K. Gimouhopoulos, T.M. Triantis, Single and simultaneous adsorption of Methyl orange and humic acid onto bentonite, Appl. Clay Sci., 70 (2012) 84–90.
  27. F.Z. Mahjoubi, A. Khalidi, A. Elhalil, N. Barka, Characteristics and mechanisms of Methyl orange sorption onto Zn/Al layered double hydroxide intercalated by dodecyl sulfate anion, Sci. Afr., 6 (2019) e00216.
  28. M.I. Khan, L. Wu, A.N. Mondal, Z. Yao, L. Ge, T. Xu, Membrane water treatment adsorption of Methyl orange from aqueous solution on anion exchange membranes: adsorption kinetics and equilibrium, 7 (2016) 23–38.
  29. J. Bensalah, A. Habsaoui, B. Abbou, L. Kadiri, I. Lebkiri, A. Lebkiri, E. Rifi, Adsorption of the anionic dye Methyl orange on used artificial zeolites: kinetic study and modeling of experimental data, Mediterr. J. Chem., 9 (2019) 311–316.
  30. D. Ljubas, G. Smoljanic´, H. Juretic, Degradation of Methyl orange and Congo red dyes by using TiO2 nanoparticles activated by the solar and the solar-like radiation, J. Environ. Manage., 161 (2015) 83–91.
  31. F.P. Sejie, M.S. Nadiye –Tabbiruka, Removal of Methyl orange (MO) from water by adsorption onto modified local clay (kaolinite), Phys. Chem., 6 (2016) 39–48.
  32. M. Mobarak, E.A. Mohamed, A.Q. Selim, F.M. Mohamed, L. Sellaoui, A. Bonilla-Petriciolet, M.K. Seliem, Statistical physics modeling and interpretation of Methyl orange adsorption on high–order mesoporous composite of MCM–48 silica with treated rice husk, J. Mol. Liq., 285 (2019) 678–687.
  33. APHA, Standard Methods for Examination of Water and Wastewater, 21st ed., American Public Health Association, Washington, 2005.
  34. S. Langergren, B.K. Svenska, Veternskapsakad, Zur theorie der sogenannten, adsorption geloester stoffe, Handlingar, 24 (1898) 1–39.
  35. L. Langmuir, The constitution and fundamental properties of solids and liquids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  36. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 385–471.
  37. J.H. van’t Hoff, Die Rolle des osmotischen Druckes in der Analogie zwischen Lösungen und Gasen, Z. Phys. Chem., 1 (1887) 481–508.
  38. V. Sencadas, C.M. Costa, V. Moreira, J. Monteiro, S.K. Mendiratta, J.F. Mano, S. Lanceros-Méndez, Poling of β-poly(vinylidene fluoride): dielectric and IR spectroscopy studies, e-Polymers, 5 (2005).
  39. N. Kouklin, M. Tzolov, D. Straus, A. Yin, J.M. Xu, Infrared absorption properties of carbon nanotubes synthesized by chemical vapor deposition, Appl. Phys. Lett., 85 (2004) 4463–4465.
  40. A. Misra, P.K. Tyagi, P. Rai, D.S. Misra, FTIR spectroscopy of multi-walled carbon nanotubes: a simple approach to study the nitrogen doping, J. Nanosci. Nanotechnol., 7 (2007) 1820–1823.
  41. Z. Haddadain, M.A. Shavandi, Z.Z. Abidin, A.F. Razi, M.H. Ismail, Removal of Methyl orange from aqueous solutions using dragon fruit (Hylocereus undatus) foliage, Chem. Sci. Trans., 2 (2013) 900–910.
  42. L. Marcal, E.H. de Faria, M. Saltarello, P.S. Calefi, E.J. Nassar, K.J. Ciuffi, Amine-functionalized titanosilicates prepared by the sol–gel process at adsorbent of azo-dye orange II, Ind. Eng. Chem. Res., 50 (2011) 239–246.
  43. D.T.A. Al-Heetimi, A.H. Dawood, Q.Z. Khalaf, T.A. Himdan, Removal of Methyl orange from aqueous solution by Iraqi bentonite adsorbent, Ibn Al-Haitham J. Pure Appl. Sci., 25 (2017).
  44. M. Sarioglu, A.A. Utay, Removal of Methylene blue by using biosolid, J. Global NEST, 8 (2006) 113–120.
  45. Y.S. Ho, T.H. Chiang, Y.M. Hsueh, Removal of basic dye from aqueous solution using tree fern as a biosorbent, Process Biochem., 40 (2005) 119–124.
  46. M. Al kan, O. Demirbas, S. Ҫelik Ҫapas, M. Dogan, Sorption of acid red 57 from aqueous solution onto sepiolite, J. Hazard. Mater., 116 (2004) 135–145.
  47. Y. Yao, H. Bing, X. Feifei, C. Xiaofeng, Equilibrium and kinetic studies of Methyl orange adsorption on multi-walled carbon nanotubes, J. Chem. Eng., 170 (2011) 82–89.
  48. Q. Ma, F. Shen, X. Lu, W. Bao, H. Ma, Studies on the adsorption behavior of Methyl orange from dye wastewater onto activated clay, Desal. Water Treat., 51 (2013) 3700–3709.
  49. A.M. Zayed, M.S.M. Abdel Wahed, E.A. Mohamed, M. Sillanpaa, Insights on the role of organic matters of some Egyptian clays in Methyl orange adsorption: isotherm and kinetic studies, Appl. Clay Sci., 166 (2018) 49–60.
  50. R. Lafi, A. Hafiane, Removal of Methyl orange (MO) from aqueous solution using cationic surfactants modified coffee waste (MCWs), J. Taiwan Inst. Chem. Eng., 58 (2016) 424–433.
  51. F. Stoeckli, Porosity in Carbons-Characterization and Applications, J. Patrick ed., Porosity in Carbons, London, Arnold, 1995, pp. 66–97.