References
- M. Al-Shammiri and M. Safar, Multi-effect distillation plants: state
of the art. Desalination, 126 (1999) 45–59.
- A. Huicochea, J. Siqueiros and R.J. Romero, Portable water purification system integrated to a heat transformer. Desalination, 165
(2004) 385–391.
- R. Saari, Usability of low temperature waste heat for sea water
desalination. Desalination, 39 (1981) 147–158.
- J. Siqueiros and R.J. Romero, Increase of COP for heat transformer
in water purification systems. Part I—Increasing heat source
temperature, Appl. Thermal Eng., 27 (2007) 1043–1053.
- R. Saravanan, Studies on two-fluid bubble pump operated vapor
absorption refrigeration system, PhD Thesis, IIT Madras, Chennai,
1999.
- K.E. Herold and M.J. Morjan, Thermodynamic properties of
lithium bromide/water solution, Part 1, ASHRAE Trans., 93
(1987) 35–48.
- A. Kumar and V. S. Patwardhan, Vapor pressure and enthalpy of
aqueous lithium bromide solutions. Heat Rec. Sys. CHP, 12(4)
(1992) 311–315.
- K.R. Patil, S.K. Chaudhari and S.S. Katti, Thermodynamic design
data for absorption heat transformers, Part III, Operating on
water-lithium iodide, Heat Rec. Sys. CHP, 11(5) (1991) 361–369.
- G.S. Grover, S. Devotta and F.A. Holland, Thermodynamic design
data for absorption heat transformers, Part III. Operating on
water-lithium chloride. Heat Rec. Sys. CHP, 8(5) (1988) 425–431.
- S. Iyoki, S. Ohemori and T. Uemura, Heat capacities of water–lithium bromide–lithium iodide system. J. Chem. Eng. Data., 35
(1990) 317–320.
- S. Iyoki, Y. Kuriyama and T. Uemura, Vapor pressures of water–lithium chloride–lithium nitrate system. J. Chem. Thermodyn., 25
(1993) 569–577.
- S. Iyoki, R. Yamanaka and T. Uemura, Physical and thermal properties of the water–lithium bromide–lithium nitrate system, Int.
J. Refrig., 16 (1993) 191–200.
- C.O. Adegoke and W.B. Gosney, Vapor pressure data for LiBr+
ZnBr2–H2O solutions, Int. J. Refrig., 16 (1991) 39–45.
- H. Iizuka and K. Nagamatsuya, New working fluids containing
ethylene-glycol for air-cooled chillers, 2. Proc. 3rd International
Energy Agency Heat Pump Conference, Tokyo, 1990, pp. 565–574.
- S. Iyoki, Water–lithium bromide+lithium chloride zinc chloride
system, Refrig., 68 (1993) 46–49.
- S. Iyoki and T. Uemura, Performance characteristics of the water–
lithium bromide–zinc chloride–calcium bromide absorption refrigerating machine. Absorption heat pump and absorption heat
transformer, Int. J. Refrig., 12 (1989) 272–277.
- S. Iyoki and T. Uemura, Physical and thermal properties of the
water–lithium bromide–zinc bromide–lithium chloride system,
Part 2, ASHRAE Trans., 96 (1990) 323–328.
- M.R. Ally, Vapour liquid equilibrium and enthalpy concentration
temperature correlations for ternary nitrate mixtures, Part 2,
ASHRAE Trans., 94 (1988) 631–638.
- O.A. Pinchuk, I.I. Orekhov and S.V. Karavan, Investigation of
thermodynamic properties of multi-component solution for
absorption refrigerating machine, Kholodinana Tekhnik, 6 (1982)
36–38.
- H.R. Lee, K.-K. Koo, S. Jeong, J.-S. Kim, H. Lee, Y.-S. Oh, D.-R.
Park and Y.-S. Baek, Thermodynamic design data and performance evaluation of the water + lithium bromide + lithium iodide
+ lithium nitrate + lithium chloride system for absorption chiller.
Appl. Eng., 20 (2000) 707–720.
- J. Yin, L. Shi, M.-S. Zhu and L. Zhong, Performance analysis of an
absorption heat transformer with different working fluid combinations, Appl. Energy, 67(3) (2000) 281–292.
- M. Bourouis,A. Coronas, R.J. Romeroand J. Siqueiro, Purification
of seawater using absorption heat transformers with water–
(LiBr+LiI+LiNO3+LiC1) and low temperature heat sources,
Desalination, 166 (2004) 209–214.
- A. Jernqvist, K. Abrahamsson and G. Aly, On the efficiencies of
absorption heat transformers, Heat Rec. Sys. CHP, 12(4) (1992)
323–334.
- A. Hatzikioseyian, R. Vidali and P. Kousi, Modelling and thermodynamic analysis of a multi effect distillation (MED) plant for
seawater desalination, http//www.metal.ntua.gr/uploads/3024/179.