References

  1. D. Sugawara, K. Minoura, F. Imamura, Chapter 3 – Tsunamis and Tsunami Sedimentology, T. Shiki, Y. Tsuji, T. Yamazaki, K. Minoura, Eds., Tsunamiites, 2008, pp. 9–49.
  2. G.M.R. Vandenbossche, P. Van Oostveldt, J.P. Remon, A fluorescence method for the determination of the molecular weight cut-off of alginat-polylysine microcapsules, J. Pharm. Pharmacol., 43 (1991) 275–277.
  3. R.L. Stover, A.O. Fernández, J. Galtés, Permeate Recovery Rate Optimization at the Alicante Spain SWRO Plant, Proceedings of the International Desalination Association World Congress, Dubai, UAE, 2009.
  4. J. Campbell, Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design, Butterworth- Heinemann, 2015.
  5. B. Erzar, P. Forquin, An experimental method to determine the tensile strength of concrete at high rates of strain, Exp. Mech., 50 (2010) 941–955.
  6. K.S. Naveen, J.P. Singh, M. Viswambaran, R.K. Dhiman, Evaluation of flexural strength of resin interim restorations impregnated with various types of silane treated and untreated glass fibres, Med. J. Armed Forces India, 71 (2015) S293–S298.
  7. J.I. Mwasiagi, X.B. Huang, X.H. Wang, Performance of neural network algorithms during the prediction of yarn breaking elongation, Fibers Polym., 9 (2008) 80–86.
  8. J. Bhadra, A. Abdulkareem, N. Al-Thani, Chapter 6 – Nanotechnology in Decontamination, G.Z. Kyzas, A.C. Mitropoulos, Eds., Composite Nanoadsorbents: Micro and Nano Technologies, Elsevier, 2019, pp. 119–137.
  9. Y.H. Yuan, T.R. Lee, Contact Angle and Wetting Properties, G. Bracco, B. Holst, Eds., Surface Science Techniques, Springer, Berlin, Heidelberg, 2013, pp. 3–34.
  10. A. Luo, N. Lior, Study of advancement to higher temperature membrane distillation, Desalination, 419 (2017) 88–100.
  11. M.A. Uddin, H.P. Chan, Chapter 8 – Adhesive Technology for Photonics, M.O. Alam, C. Bailey, Eds., Advanced Adhesives in Electronics: Materials, Properties and Applications Woodhead Publishing Series in Electronic and Optical Materials, Woodhead Publishing, 2011.
  12. J.F. Briand, Marine antifouling laboratory bioassays: an overview of their diversity, Biofouling, 25 (2009) 297–311.
  13. I. Campos, M. Palomar, A. Amador, R. Ganem, J. Martinez, Evaluation of the corrosion resistance of iron boride coatings obtained by paste boriding process, Surf. Coat. Technol., 201 (2006) 2438–2442.
  14. M. Ulbricht, Advanced functional polymer membranes, Polymer, 47 (2006) 2217–2262.
  15. R.E. Kesting, The four tiers of structure in integrally skinned phase inversion membranes and their relevance to the various separation regimes, J. Appl. Polym. Sci., 41 (1990) 2739–2752.
  16. Y. Shimizu, Y.I. Okuno, K. Uryu, S. Ohtsubo, A. Watanabe, Filtration characteristics of hollow fiber microfiltration membranes used in membrane bioreactor for domestic wastewater treatment, Water Res., 30 (1996) 2385–2392.
  17. J. Cui, X. Zhang, H. Liu, S. Liu, K.L. Yeung, Preparation and application of zeolite/ceramic microfiltration membranes for treatment of oil contaminated water, J. Membr. Sci., 325 (2008) 420–426.
  18. L. Carneiro, I. dos Santos Sa, F. dos Santos Gomes, V.M. Matta, L.M.C. Cabral, Cold sterilization and clarification of pineapple juice by tangential microfiltration, Desalination, 148 (2002) 93–98.
  19. L. Yan, S. Hong, M.L. Li, Y.S. Li, Application of the Al2O3-PVDF nanocomposite tubular ultrafiltration (UF) membrane for oily wastewater treatment and its antifouling research, Sep. Purif. Technol., 66 (2009) 347–352.
  20. C. Mbareck, Q.T. Nguyen, O.T. Alaoui, D. Barillier, Elaboration, characterization and application of polysulfone and polyacrylic acid blends as ultrafiltration membranes for removal of some heavy metals from water, J. Hazard. Mater., 171 (2009) 93–101.
  21. S. Barredo-Damas, M.I. Alcaina-Miranda, M.I. Iborra- Clar, J.A. Mendoza-Roca, Application of tubular ceramic ultrafiltration membranes for the treatment of integrated textile wastewaters, Chem. Eng. J., 192 (2012) 211–218.
  22. A. Bhattacharya, P. Ghosh, Nanofiltration and reverse osmosis membranes: theory and application in separation of electrolytes, Rev. Chem. Eng., 20 (2004) 111–173.
  23. V. Kočanová, J. Cuhorka, L. Dušek, P. Mikulášek, Application of nanofiltration for removal of zinc from industrial wastewater, Desal. Water Treat., 75 (2017) 342–347.
  24. Y. Qing, L.S. Zhang, Y.Z. Li, Y.X. Pu, W.B. Zhu, Studies on the application of nanofiltration membranes to the treatment of pesticide wastewater, Ind. Water Treat., 3 (2009) 10.
  25. K.L. Tu, L.D. Nghiem, A.R. Chivas, Boron removal by reverse osmosis membranes in seawater desalination applications, Sep. Purif. Technol., 75 (2010) 87–101.
  26. J.H. Al-Rifai, H. Khabbaz, A.I. Schäfer, Removal of pharmaceuticals and endocrine disrupting compounds in a water recycling process using reverse osmosis systems, Sep. Purif. Technol., 77 (2011) 60–67.
  27. O.A. Bamaga, A. Yokochi, E.G. Beaudry, Application of forward osmosis in pretreatment of seawater for small reverse osmosis desalination units, Desal. Water Treat., 5 (2009) 183–191.
  28. K. Lutchmiah, L. Lauber, K. Roest, D.J.H. Harmsen, J.W. Post, L.C. Rietveld, J.B. van Lier, E.R. Cornelissen, Zwitterions as alternative draw solutions in forward osmosis for application in wastewater reclamation, J. Membr. Sci., 460 (2014) 82–90.
  29. N.K. Rastogi, Opportunities and challenges in application of forward osmosis in food processing, Crit. Rev. Food Sci. Nutr., 56 (2016) 266–291.
  30. H.K. Oh, S. Takizawa, S. Ohgaki, H. Katayama, K. Oguma, M.J. Yu, Removal of organics and viruses using hybrid ceramic MF system without draining PAC, Desalination, 202 (2007) 191–198.
  31. S.M. Samaei, S. Gato-Trinidad, A. Altaee, The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters–a review, Sep. Purif. Technol., 200 (2018) 198–220.
  32. H. Ramlow, R.K.M. Ferreira, C. Marangoni, R.A.F. Machado, Ceramic membranes applied to membrane distillation: a comprehensive review, Int. J. Appl. Ceram. Technol., 16 (2019) 2161–2172.
  33. R.J. Ciora Jr., P.K.T. Liu, Ceramic membranes for environmental related applications, Fluid/Part. Sep. J., 15 (2003) 51–60.
  34. B. Hofs, S.G.J. Heijman, J.Z. Hamad, M.D. Kennedy, G. Amy, Ceramic Microfiltration with a Sub-Micron PAC Pre-Coat for Water Treatment, J.P.T. Melin, M. Dohmann, Eds., Aachener Tagung Wasser und Membranen, Vol. 8, Aachen, 2009, p. W12.
  35. B. van der Bruggen, C. Vandecasteele, T. van Gestel, W. Doyen, R. Leysen, A review of pressure-driven membrane processes in wastewater treatment and drinking water production, Environ. Prog., 22 (2003) 46–56.
  36. E.R. Cornelissen, B. Hofs, U. Muller, E.F. Beerendonk, S.G.J. Heijman, Direct and Hybrid Ceramic Microfiltration in Water Treatment, TECHNEAU: Safe Drinking Water from Source to Tap, IWA Publishing, Maastricht, 2009, pp. 83–97.
  37. K.A. DeFriend, M.R. Wiesner, A.R. Barron, Alumina and aluminate ultra-filtration membranes derived from alumina nanoparticles, J. Membr. Sci., 224 (2003) 11–28.
  38. Y. Yoshino, T. Suzuki, B.N. Nair, H. Taguchi, N. Itoh, Development of tubular substrates, silica based membranes and membrane modules for hydrogen separation at high temperature, J. Membr. Sci., 267 (2005) 8–17.
  39. J. Caro, Hierarchy in inorganic membranes, Chem. Soc. Rev., 45 (2016) 3468–3478.
  40. A. Majouli, S. Tahiri, S.A. Younssi, H. Loukili, A. Albizane, Elaboration of new tubular ceramic membrane from local moroccan perlite for microfiltration process. Application to treatment of industrial wastewaters, Ceram. Int., 38 (2012) 4295–4303.
  41. R.D. Colle, C.A. Fortulan, S.R. Fontes, Manufacture and characterization of ultra and microfiltration ceramic membranes by isostatic pressing, Ceram. Int., 37 (2011) 1161–1168.
  42. S. Masmoudi, R.B. Amar, A. Larbot, H.E. Feki, A.B. Salah, L. Cot, Elaboration of inorganic microfiltration membranes with hydroxyapatite applied to the treatment of wastewater from sea product industry, J. Membr. Sci., 247 (2005) 1–9.
  43. X. Wang, Z. Yang, C. Yu, L. Yin, C. Zhang, X. Gu, Preparation of T-type zeolite membranes using a dip-coating seeding suspension containing colloidal SiO2, Microporous Mesoporous Mater., 197 (2014) 17–25.
  44. Z. Liu, G. Zhang, X. Dong, W. Jiang, W. Jin, N. Xu, Fabrication of asymmetric tubular mixed-conducting dense membranes by a combined spin-spraying and co-sintering process, J. Membr. Sci., 415–416 (2012) 313–319.
  45. A. Abdullayev, M.F. Bekheet, D.A.H. Hanaor, A. Gurlo, Materials and applications for low-cost ceramic membranes, Membranes, 9 (2019) 105.
  46. B.F. Jones, E. Galan, Reviews in Mineralogy, S.W. Bailey, P.H. Ribbe, Eds., Hydrous Phyllosilicates (Exclusive of Micas), Mineralogical Society of America, Washington, 1988, pp. 631–674.
  47. N. Saffaj, M. Persin, S.A. Younsi, A. Albizane, M. Cretin, A. Larbot, Elaboration and characterization of microfiltration and ultrafiltration membranes deposited on raw support prepared from natural Moroccan clay: application to filtration of solution containing dyes and salts, Appl. Clay Sci., 31 (2006) 110–119.
  48. S. Jana, M.K. Purkait, K. Mohanty, Preparation and characterization of low-cost ceramic microfiltration membranes for the removal of chromate from aqueous solutions, Appl. Clay Sci., 47 (2010) 317–324.
  49. S. Jana, A. Saikia, M.K. Purkait, K. Mohanty, Chitosan based ceramic ultrafiltration membrane: preparation, characterization and application to remove Hg(II) and As(III) using polymer enhanced ultrafiltration, Chem. Eng. J., 170 (2011) 209–219.
  50. S. Khemakhem, R.B. Amar, R.B. Hassen, A. Larbot, M. Medhioub, A.B. Salah, L. Cot, New ceramic membranes for tangential waste-water filtration, Desalination, 167 (2004) 19–22.
  51. S.K. Hubadillah, M.H.D. Othman, T. Matsuura, A.F. Ismail, M.A. Rahman, Z. Harun, J. Jaafar, M. Nomura, Fabrications and applications of low cost ceramic membrane from kaolin: a comprehensive review, Ceram. Int., 44 (2018) 4538–4560.
  52. D. Vasanth, G. Pugazhenthi, R. Uppaluri, Fabrication and properties of low cost ceramic microfiltration membranes for separation of oil and bacteria from its solution, J. Membr. Sci., 379 (2011) 154–163.
  53. N. Medjemem, A. Harabi, F. Bouzerara, L. Foughali, B. Boudaira, A. Guechi, N. Brihi, Elaboration and characterization of low cost ceramics microfiltration membranes applied to the sterilization of plant tissue culture media, J. Taiwan Inst. Chem. Eng., 59 (2016) 79–85.
  54. H. Guo, W. Li, F. Ye, Low-cost porous mullite ceramic membrane supports fabricated from kyanite by casting and reaction sintering, Ceram. Int., 42 (2016) 4819–4826.
  55. C.-Y. Bai, Y. Li, Z.-M. Liu, P.-W. Liu, X.-Y. Deng, J.-B. Li, J. Yang, Fabrication and properties of mullite-bonded porous SiC membrane supports using bauxite as aluminum source, Ceram. Int., 41 (2015) 4391–4400.
  56. L. Li, X. Dong, Y. Dong, L. Zhu, S.-J. You, Y.-F. Wang, Incorporation of zinc for fabrication of low-cost spinelbased composite ceramic membrane support to achieve its stabilization, J. Hazard. Mater., 287 (2015) 188–196.
  57. Q. Lü, X. Dong, Z. Zhu, Y. Dong, Environment-oriented lowcost porous mullite ceramic membrane supports fabricated from coal gangue and bauxite, J. Hazard. Mater., 533 (2014) 136–145.
  58. M. Abbasi, M. Mirfendereski, M. Nikbakht, M. Golshenas, T. Mohammadi, Performance study of mullite and mullite– alumina ceramic MF membranes for oily wastewaters treatment, Desalination, 259 (2010) 169–178.
  59. R.W. Broach, D. Jan, D.A. Lesch, S. Kulprathipanja, E. Roland, P. Kleinschmit, Zeolite, Ullmann’s Encyclopedia of Industrial Chemistry, 1982.
  60. Y. Dong, S. Chen, X. Zhang, J. Yang, X. Liu, G. Meng, Fabrication and characterization of low cost tubular mineral-based ceramic membranes for micro-filtration from natural zeolite, J. Membr. Sci., 281 (2006) 592–599.
  61. Y. Dong, X. Feng, X. Feng, Y. Ding, X. Liu, G. Meng, Preparation of low-cost mullite ceramics from natural bauxite and industrial waste fly ash, J. Alloys Compd., 460 (2008) 599–606.
  62. O. Şan, C. Özgür, Fabrication of glassy ceramic membrane filters for filtration of spring water with clogging phenomena, J. Membr. Sci., 305 (2007) 169–175.
  63. A. Chakir, J. Bessiere, K.E. Kacemi, B. Marouf, A comparative study of the removal of trivalent chromium from aqueous solutions by bentonite and expanded perlite, J. Hazard. Mater., 95 (2002) 29–46.
  64. M. Roulia, A. Alexandros, A. Vassiliadis, Sorption characterization of a cationic dye retained by clays and perlite, Microporous Mesoporous Mater., 116 (2008) 732–740.
  65. A. Bouazizi, M. Breida, A. Karim, B. Achiou, M. Ouammou, J.I. Calvo, A. Aaddane, K. Khiat, S. Alami Younssi, Development of a new TiO2 ultrafiltration membrane on flat ceramic support made from natural bentonite and micronized phosphate and applied for dye removal, Ceram. Int., 43 (2017) 1479–1487.
  66. C.M. Hung, Cordierite-supported Pt-Pd-Rh ternary composite for selective catalytic oxidation of ammonia, Powder Technol., 200 (2010) 78–83.
  67. D. Njoya, A. Elimbi, D. Fouejio, M. Hajjaji, Effects of two mixtures of kaolin-talc-bauxite and firing temperatures on the characteristics of cordierite-based ceramics, J. Build. Eng., 8 (2016) 99–106.
  68. N.E. Hipedinger, A.N. Scian, E.F. Aglietti, Magnesiaammonium phosphate-bonded cordierite refractory castables: phase evolution on heating and mechanical properties, Cem. Concr. Res., 34 (2004) 157–164.
  69. X. Zhang, D. Fang, B. Lin, Y. Dong, G. Meng, X. Liu, Asymmetric porous cordierite hollow fiber membrane for microfiltration, J. Alloys Compd., 487 (2009) 631–638.
  70. Y. Dong, X. Feng, D. Dong, S. Wang, J. Yang, J. Gao, X. Liu, G. Meng, Elaboration and chemical corrosion resistance of tubular macro-porous cordierite ceramic membrane supports, J. Membr. Sci., 304 (2007) 65–75.
  71. G. Montel, G. Bonel, M. Heugheubaert, J.C. Trombe, C. Rey, New concepts in the composition, crystallisation and growth of the mineral component of calcified tissues, J. Cryst. Growth, 53 (1981) 74–99.
  72. J.R. Van Wazer, Phosphorus and its Compounds Chemistry, 1st ed., Interscience, New York, 1958.
  73. S. Masmoudi, A. Larbot, H. El Feki, R. Ben Amar, Elaboration and properties of new ceramic microfiltration membranes from natural and synthesised apatite, Desalination, 190 (2006) 89–103.
  74. J. Sunarso, S. Baumann, J.M. Serra, W.A. Meulenberg, S. Liu, Y.S. Lin, J.C. Diniz da Costa, Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation, J. Membr. Sci., 320 (2008) 13–41.
  75. A. Burgraaf, L. Cot, Fundamentals of Inorganic Membrane Science and Technology, Elsevier, Amsterdam, 1996.
  76. P. Haworth, S. Smart, J. Glasscock, J.C. Diniz da Costa, Yttrium doped BSCF membranes for oxygen separation, Sep. Purif. Technol., 81 (2011) 88–93.
  77. J. Tong, W. Yang, B. Zhu, R. Cai, Investigation of ideal zirconiumdoped perovskite-type ceramic membrane materials for oxygen separation, J. Membr. Sci., 203 (2002) 175–189.
  78. X. Chen, H. Liu, Y. Wei, J. Caro, H. Wang, A novel zincum-doped perovskite-type ceramic membrane for oxygen separation, J. Alloys Compd., 484 (2009) 386–389.
  79. B. Achiou, H. Elomari, A. Bouazizi, A. Karim, M. Ouammou, A. Albizane, J. Bennazha, S. Alami Younssi, I.E. El Amrani, Manufacturing of tubular ceramic microfiltration membrane based on natural pozzolan for pretreatment of seawater desalination, Desalination, 419 (2017) 181–187.
  80. I. Jedidi, S. Saïdi, S. Khemakhem, A. Larbot, N. Elloumi-Ammar, A. Fourati, A. Charfi, A. Ben Salaha, R. Ben Amar, Elaboration of new ceramic microfiltration membranes from mineral coal fly ash applied to waste water treatment, J. Hazard. Mater., 172 (2011) 152–158.
  81. E. Mulder, A mixture of fly ashes as road base construction material, Waste Manage., 16 (1996) 15–20.
  82. C. Palmonari, G. Nassetti, Evolution, Future Trends of Traditional Ceramics, American Ceramic Society Bulletin, 73 (1994) 42–46.
  83. M. Ilic, C. Cheeseman, C. Sollars, J. Knight, Mineralogy and microstructure of sintered lignite coal fly ash, Fuel, 82 (2003) 331–336.
  84. J. Liu, Y. Dong, X. Dong, S. Hampshire, L. Zhu, Z. Zhu, L. Li, Feasible recycling of industrial waste coal fly ash for preparation of anorthite-cordierite based porous ceramic membrane supports with addition of dolomite, J. Eur. Ceram. Soc., 36 (2016) 1059–1071.
  85. J. Fang, G. Qin, W. Wei, X. Zhao, L. Jiang, Elaboration of new ceramic membrane from spherical fly ash for microfiltration of rigid particle suspension and oil-in-water emulsion, Desalination, 311 (2013) 113–126.
  86. X. Querol, M. Izquierdo, E. Monfort, E. Alvarez, O. Font, T. Moreno, A. Alastuey, X. Zhuang, W. Lu, Y. Wang, Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China, Int. J. Coal Geol., 75 (2008) 93–104.
  87. J.D.N. Pone, K.A.A. Hein, G.B. Stracher, H.J. Annegarn, R.B. Finkleman, D.R. Blake, J.K. McCormack, P. Schroeder, The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coalfields of South Africa, Int. J. Coal Geol., 72 (2007) 124–140.
  88. D.H. Yan, K.H. Karstensen, Q.F. Huang, Q. Wang, M.L. Cai, Coprocessing of industrial and hazardous wastes in cement kilns: a review of current status and future needs in China, Environ. Eng. Sci., 53 (2010) 37–45.
  89. C. Zhou, G. Liu, S. Wu, P.K.S. Lam, The environmental characteristics of usage of coal gangue in bricking-making: a case study at Huainan, China, Chemosphere, 95 (2014) 534–280.
  90. M. Yang, Z. Guo, Y. Deng, X. Xing, K. Qiu, J. Long, J. Li, Preparation of CaO-Al2O3-SiO2 glass ceramics from coal gangue, Int. J. Miner. Process., 102 (2012) 112–115.
  91. F. Mohammadi, T. Mohammadi, Optimal conditions of porous ceramic membrane synthesis based on alkali activated blast furnace slag using Taguchi method, Ceram. Int., 43 (2017) 14369–14379.
  92. S.K. Hubadillah, M.H.D. Othman, Z. Harun, A.F. Ismail, M.A. Rahman, J. Jaafar, A novel green ceramic hollow fiber membrane (CHFM) derived from rice husk ash as combined adsorbent-separator for efficient heavy metals removal, Ceram. Int., 43 (2017) 4716–4720.
  93. P.X. Sheng, Y.P. Ting, J.P. Chen, L. Hong, Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms, J. Colloid Interface Sci., 535 (2004) 131–141.
  94. S. Zhou, A. Xue, Y. Zhang, X. Huang, M. Li, Y. Zhao, Y. Fan, W. Xing, Preparation of a new ceramic microfiltration membrane with a separation layer of attapulgite nanofibers, Mater. Lett., 143 (2015) 53–30.
  95. P.B. Belibi, M.M.G. Nguemtchouin, M. Rivallin, J. Ndi Nsami, J. Sieliechi, S. Cerneaux, M.B. Ngassoum, M. Cretin, Microfiltration ceramic membranes from local Cameroonian clay applicable to water treatment, Ceram. Int., 41 (2015) 2752–2759.
  96. X. Cheng, N. Li, M. Zhu, L. Zhang, Y. Deng, C. Deng, Positively charged microporous ceramic membrane for the removal of titan yellow through electrostatic adsorption, J. Environ. Sci., 44 (2016) 204–212.
  97. G. Wei, B. Fan, Y. Wei, S. Xu, Z. Zhao, N. Qiao, Preparation of a nano-scale ceramic membrane and its application in the medium-pressure boiler with phosphate treatment, Desalination, 322 (2013) 167–175.
  98. S. Mimoune, R.E. Belazzougui, F. Amrani, Purification of aqueous solutions of metal ions by ultrafiltration, Desalination, 217 (2007) 251–259.
  99. P. Cañizares, Á. Pérez, R. Camarillo, Recovery of heavy metals by means of ultrafiltration with water-soluble polymers: calculation of design parameters, Desalination, 144 (2002) 539–285.
  100. C.P. Nanseu-Njiki, S.R. Tchamango, P.C. Ngom, A. Darchen, E. Ngameni, Mercury (II) removal from water by electrocoagulation using aluminum and iron electrodes, J. Hazard. Mater., 168 (2009) 1430–1436.
  101. K.M. Hassan, T. Fukuhara, F.I. Hai, Q.H. Bari, K.M.S. Islam, Development of a bio-physicochemical technique for arsenic removal from groundwater, Desalination, 249 (2009) 224–229.
  102. I.A. Katsoyiannis, A.I. Zouboulis, Application of biological processes for the removal of arsenic from groundwaters, Water Res., 38 (2004) 17–26.
  103. Y. Zheng, A. Wang, Removal of heavy metals using polyvinyl alcohol semi-IPN poly(acrylic acid)/tourmaline composite optimized with response surface methodology, Chem. Eng. J., 162 (2010) 186–193.
  104. D. Vasanth, G. Pugazhenthi, R. Uppaluri, Biomass assisted microfiltration of chromium (VI) using Baker’s yeast by ceramic membrane prepared from low cost raw materials, Desalination, 285 (2012) 239–244.
  105. C.S. Johnston, R.J. Morris, Eds., Oily Water Discharges. Regulatory, Technical and Scientific Considerations, Applied Science Publishers Ltd., London, 1980, p. 225.
  106. M. Stewart, K. Arnold, Crude Oil Treating Systems, M. Stewart, K. Arnold, Eds., Emulsions and Oil Treating Equipment: Selection, Sizing and Troubleshooting, Gulf Professional Publishing, Burlington, 2009, pp. 1–80.
  107. X.S. Yi, S.L. Yu, W.X. Shi, N. Sun, L.M. Jin, S. Wang, B. Zhang, C. Ma, L.P. Sun, The influence of important factors on ultrafiltration of oil/water emulsion using PVDF membrane modified by nano-sized TiO2/Al2O3, Desalination, 281 (2011) 179–184.
  108. D. Wandera, S.R. Wickramasinghe, S.M. Husson, Modification and characterization of ultrafiltration membranes for treatment of produced water, J. Membr. Sci., 373 (2011) 178–188.
  109. P. Janknecht, A.D. Lopes, A.M. Mendes, Removal of industrial cutting oil from oil emulsions by polymeric ultra- and microfiltration membranes, Environ. Sci. Technol., 38 (2004) 4878–4883.
  110. K. Bensadok, M. Belkacem, G. Nezzal, Treatment of cutting oil/water emulsion by coupling coagulation and dissolved air flotation, Desalination, 206 (2007) 440–448.
  111. R.W. Baker, Research needs in the membrane separation industry: Looking back, looking forward, J. Membr. Sci., 362 (2010) 134–136.
  112. D. Zou, M. Qiu, X. Chen, E. Drioli, Y. Fan, One step co-sintering process for low-cost fly ash based ceramic microfiltration membrane in oil-in-water emulsion treatment, Sep. Purif. Technol., 210 (2019) 511–520.
  113. L. Zhu, X. Dong, M. Xu, F. Yang, M.D. Guiver, Y. Dong, Fabrication of mullite ceramic-supported carbon nanotube composite membranes with enhanced performance in direct separation of high-temperature emulsified oil droplets, J. Membr. Sci., 582 (2019) 140–150.
  114. P. Mittal, S. Jana, K. Mohanty, Synthesis of low-cost hydrophilic ceramic–polymeric composite membrane for treatment of oily wastewater, Desalination, 282 (2011) 54–62.
  115. M. Cheryan, Ultrafiltration and Microfiltration Handbook, CRC Press, 1998.
  116. B. Sarkar, S. DasGupta, S. De, Cross-flow electro-ultrafiltration of mosambi (Citrus sinensis (L.) Osbeck) juice, J. Food Eng., 89 (2008) 241–245.
  117. G. Capannelli, A. Bottino, S. Munari, D.G. Lister, G. Maschio, I. Becchi, The use of membrane processes in the clarification of orange and lemon juices, J. Food Eng., 21 (1994) 473–483.
  118. L. Espamer, C. Pagliero, A. Ochoa, J. Marchese, Clarification of lemon juice using membrane process, Desalination, 200 (2006) 565–567.
  119. A.F.G. Bailey, A.M. Barbe, P.A. Hogan, R.A. Johnson, J. Sheng, The effect of ultrafiltration on the subsequent concentration of grape juice by osmotic distillation, J. Membr. Sci., 164 (2000) 195–204.
  120. K.-S. Youn, J.-H. Hong, D.-H. Bae, S.-J. Kim, S.-D. Kim, Effective clarifying process of reconstituted apple juice using membrane filtration with filter-aid pretreatment, J. Membr. Sci., 228 (2004) 179–186.
  121. A. Cassano, E. Drioli, G. Galaverna, R. Marchelli, G.D. Silvestro, P. Cagnasso, Clarification and concentration of citrus and carrot juices by integrated membrane processes, J. Food Eng., 57 (2003) 153–163.
  122. C. Chhaya, P. Rai, G.C. Majumdar, S. Dasgupta, S. De, Clarification of watermelon (Citrullus lanatus) juice by microfiltration, J. Food Process Eng., 31 (2008) 768–782.
  123. A. Cassano, M. Marchio, E. Drioli, Clarification of blood orange juice by ultrafiltration: analyses of operating parameters, membrane fouling and juice quality, Desalination, 212 (2007) 15–53.
  124. B.K. Nandi, B. Das, R. Uppaluri, M.K. Purkait, Microfiltration of Mosambi juice using low cost ceramic membrane, J. Food Eng., 95 (2009) 597–605.
  125. S.T. Mitrouli, S.G. Yiantsios, A.J. Karabelas, M. Mitrakas, M. Fǿllesdal, P.A. Kjolseth, Pretreatment for desalination of seawater from an open intake by dual-media filtration: pilot testing and comparison of two different media, Desalination, 222 (2008) 24–37.
  126. S. Jeong, S.-J. Kim, L.H. Kim, M.S. Shin, S. Vigneswaran, T.V. Nguyen, I.S. Kim, Foulant analysis of a reverse osmosis membrane used pretreated seawater, J. Membr. Sci., 428 (2013) 434–444.
  127. S. Jeong, S.J. Kim, C.M. Kim, S. Vigneswaran, T.V. Nguyen, H.K. Shon, J. Kandasamy, I.S. Kim, A detailed organic matter characterization of pretreated seawater using low pressure microfiltration hybrid systems, J. Membr. Sci., 428 (2013) 290–300.
  128. M.A. Vetten, C.S. Yah, T. Singh, M. Gulumian, Challenges facing sterilization and depyrogenation of nanoparticles: effects on structural stability and biomedical applications, Nanomed. Nanotechnol. Biol. Med., 10 (2014) 1391–1399.
  129. Y.W. Cong, W. Fang, W. Tao, L.Y. Xing, R.B. Yong, F.O. Kengara, L.B. Zeng, X. Jiang, Effects of autoclaving and mercuric chloride sterilization on PAHs dissipation in a two-liquidphase soil slurry, Pedosphere, 21 (2011) 56–64.
  130. Y. Shi, L. Xu, D. Gong, J. Lu, Effects of sterilization treatments on the analysis of TOC in water samples, J. Environ. Sci., 22 (2010) 789–795.
  131. A. Kumar, X. Yuan, A.K. Sahu, J. Dewulf, S.J. Ergas, H.V. Langenhove, A hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach, J. Chem. Technol. Biotechnol., 85 (2010) 387–394.
  132. J.-W. Wang, N.-X. Li, Z.-R. Li, J.-R. Wang, X. Xu, C.-S. Chen, Preparation and gas separation properties of Zeolitic imidazolate frameworks-8 (ZIF-8) membranes supported on silicon nitride ceramic hollow fibers, Ceram. Int., 42 (2016) 8949–8954.
  133. H.W.J.P. Neomagus, G. Saracco, G.F. Versteeg, A fixed bed barrier reactor with separate feed of reactants, Chem. Eng. Commun., 184 (2001) 49–69.
  134. M.P. Pina, M. Menendez, J. Santamaría, The Knudsendiffusion catalytic membrane reactor: an efficient contactor for the combustion of volatile organic compounds, Appl. Catal., B, 11 (1996) L19–53.
  135. M. Schwartz, J.H. White, A.F. Sammells, Catalytic Membrane Reactor with Two Component Three-Dimensional Catalysis, International Patent WO 99/21649, 1999.
  136. U. Balachandran, M.S. Kleefisch, T.P. Kobylinski, S.L. Morissette, S. Pei, Oxygen Ion-Conducting Dense Membranes, WO 94/24065, 1994.
  137. N. Itoh, M.A. Sanchez, W.C. Xu, K. Haraya, M. Hongo, Application of a membrane reactor system to thermal decomposition of CO2, J. Membr. Sci., 77 (1993) 245–253.
  138. Y. Teraoka, Y. Matsumura, K. Asakura, S. Kagawa, Application of mixed conductive La-Sr-Co-Fe perovskites to NOx removal membrane reactors, Solid State Ionics, 99 (1999) 131–138.
  139. Y. Zeng, Y.S. Lin, S.L. Swartz, Perovskite-type ceramic membrane: synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane, J. Membr. Sci., 150 (1998) 87–98.
  140. B.D. Bhide, S.A. Stern, A new evaluation of membrane processes for the oxygen-enrichment of air. I. Identification of optimum operating conditions and process configuration, J. Membr. Sci., 62 (1991) 13–35.
  141. W.J. Koros, R. Mahajan, Pushing the limits on possibilities for large scale gas separation: which strategies?, J. Membr. Sci., 175 (2000) 181–196.
  142. Mott Metallurgical Corporation, USA, 2007. Available at: http://www.mottcorp.com.
  143. B.K. Nandi, R. Uppaluri, M.K. Purkait, Preparation and characterization of low cost ceramic membranes for microfiltration applications, Appl. Clay Sci., 42 (2008) 102–110.
  144. S. Emani, R. Uppaluri, M.K. Purkait, Preparation and characterization of low cost ceramic membranes for mosambi juice clarification, Desalination, 317 (2013) 32–40.
  145. B. Ghosh, M.K. Sinha, M.K. Purkait, A comparative analysis of low-cost ceramic membrane preparation for effective fluoride removal using hybrid technique, Desalination, 353 (2013) 2–13.
  146. S. Bose, C. Das, Role of binder and preparation pressure in tubular ceramic membrane processing: design and optimization study using response surface methodology (RSM), Ind. Eng. Chem. Res., 53 (2014) 12319–12329.
  147. S. Emani, R. Uppaluri, M.K. Purkait, Cross flow microfiltration of oil-water emulsions using kaolin based low cost ceramic membranes, Desalination, 341 (2014) 61–71.
  148. B. Das, B. Chakrabarty, P. Barkakati, Preparation and characterization of novel ceramic membranes for microfiltration applications, Ceram. Int., 42 (2016) 14326–14333.
  149. Y. Rasouli, M. Abbasi, S.A. Hashemifard, Investigation of in-line coagulation-MF hybrid process for oily wastewater treatment by using novel ceramic membranes, J. Cleaner Prod., 161 (2017) 545–559.
  150. R.V. Kumar, L. Goswami, K. Pakshirajan, G. Pugazhenthi, Dairy wastewater treatment using a novel low cost tubular ceramic membrane and membrane fouling mechanism using pore blocking models, J. Water Process Eng., 13 (2016) 168–175.