References
- D. Błędzka, J. Gromadzińska, W. Wąsowicz, Parabens: from
environmental studies to human health, Environ. Int., 67 (2014)
27–42.
- A. Mehdinia, M. Bahrami, S. Mozaffari, A comparative study
on different functionalized mesoporous silica nanomagnetic
sorbents for efficient extraction of parabens, J. Iran. Chem. Soc.,
12 (2015) 1543–1552.
- C. Haman, X. Dauchy, C. Rosin, Occurrence, fate and behavior
of parabens in aquatic environments: a review, Water Res.,
68 (2015) 1–11.
- Y.P. Chin, S. Mohamad, M. Radzi, B. Abas, Removal of parabens
from aqueous solution using β-cyclodextrin cross-linked
polymer, Int. J. Mol. Sci., 11 (2010) 3459–3471.
- A.K. Srivastav, D. Dubey, D. Chopra, R.S. Ray, Toxicological
potential of parabens – a widely used preservative, Global
J. Multidiscip. Stud., 4 (2014) 1–5.
- B. Quintana, I. Rodrı, R. Cela, Evaluation of the occurrence
and biodegradation of parabens and halogenated by-products
in wastewater by accurate-mass liquid chromatographyquadrupole-time-of-flight-mass, Water Res., 5 (2011) 6770–6780.
- M.J. Ahmed, S.K. Theydan, Fluoroquinolones antibiotics
adsorption onto microporous activated carbon from lignocellulosic
biomass by microwave pyrolysis, J. Taiwan Inst.
Chem. Eng., 45 (2014) 219–226.
- H. Chen, C. Chiou, S. Chang, Comparison of methylparaben,
ethylparaben and propylparaben adsorption onto magnetic
nanoparticles with phenyl group, Powder Technol., 311 (2017)
426–431.
- W. Chou, Y. Huang, Electrochemical removal of indium ions
from aqueous solution using iron electrodes, 172 (2009) 46–53.
- H.M. Inamisawa, K.M. Urashima, M.M. Inamisawa, N.A. Rai,
T.O. Kutani, Determination of indium by graphite furnace
atomic absorption spectrometry after coprecipitation with
chitosan, Anal. Sci., 19 (2003) 401–404.
- H. Ma, Y. Lei, Q. Jia, W. Liao, L. Lin, An extraction study
of gallium, indium, and zinc with mixtures of secoctylphenoxyacetic
acid and primary amine N1923, Sep. Purif.
Technol., 80 (2011) 351–355.
- R.D. Ambashta, M. Sillanpää, Water purification using magnetic
assistance: a review, J. Hazard. Mater., 180 (2010) 38–49.
- D. Gryglik, J.S. Miller, The aqueous photosensitized degradation
of butylparaben, Photochem. Photobiol. Sci., 8 (2009) 549–555.
- K. Soo Tay, N.A. Rahman, M.R.B. Abas, Kinetic studies of
the degradation of parabens in aqueous solution by ozone
oxidation, Environ. Chem. Lett., 4 (2009) 331–337.
- H.R. Andersen, E. Eriksson, Estrogenic personal care products
in a greywater reuse system, Water Sci. Technol., 56 (2007)
45–49.
- I. Márquez-Sillero, E. Aguilera-Herrador, S. Cárdenas,
M. Valcárcel, Determination of parabens in cosmetic products
using multi-walled carbon nanotubes as solid phase extraction
sorbent and corona-charged aerosol detection system., J. Chromatogr.
A, 1217 (2010) 1–6.
- I. Ali, New generation adsorbents for water treatment, Chem.
Rev., 112 (2012) 5073–5091.
- T.M. Alslaibi, I. Abustan, M.A. Ahmad, A. Foul, A review:
production of activated carbon from agricultural byproducts
via conventional and microwave heating, J. Chem. Technol.
Biotechnol., 88 (2013) 1183–1190.
- J.M. Dias, M.C.M. Alvim-Ferraz, M.F. Almeida, M. Sa, Waste
materials for activated carbon preparation and its use in
aqueous-phase treatment: a review, J. Environ. Manage.,
85 (2007) 833–846.
- K.A. Krishnan, K.G. Sreejalekshmi, V. Vimexen, V.V Dev,
Evaluation of adsorption properties of sulphurised activated
carbon for the effective and economically viable removal
of Zn(II) from aqueous solutions, Ecotoxicol. Environ. Saf.,
124 (2016) 418–425.
- W. Liu, H. Yuan, Characterization and application of activated
carbon regenerated by the combination of sulfuric acid
pretreatment and thermal regeneration, Desal. Water Treat.,
178 (2020) 83–93.
- M. Rezvani, G. Najafpou, M. Mohammadi, H. Zare,
Amperometric biosensor for detection of triglyceride tributyrin
based on zero point charge of activated carbon, Turk. J. Biol.,
41 (2017) 268–277.
- R. Mailler, J. Gasperi, Y. Coquet, A. Buleté, E. Vulliet, S. Deshayes,
S. Zedek, C. Mirande-Bret, V. Eudes, A. Bressy, Removal of a
wide range of emerging pollutants from wastewater treatment
plant discharges by micro-grain activated carbon in fluidized
bed as tertiary treatment at large pilot scale, Sci. Total Environ.,
542 (2016) 983–996.
- S. Mohammad, D.E. Abulyazied, S.M. Ahmed, Application of
polyaniline/activated carbon nanocomposites derived from
different agriculture wastes for the removal of Pb(II) from
aqueous media, Desal. Water Treat., 170 (2019) 199–210.
- S. Nethaji, A. Sivasamy, A.B. Mandal, Bioresource technology
preparation and characterization of corn cob activated carbon
coated with nano-sized magnetite particles for the removal of
Cr(VI), Bioresour. Technol., 134 (2013) 94–100.
- G. Karaçetin, S. Sivrikayaa, M. Imamoğlu, Adsorption of
methylene blue from aqueous solutions by activated carbon
prepared from hazelnut husk using zinc chloride, J. Anal. Appl.
Pyrolysis. 110 (2014) 270–276.
- L. Limousy, I. Ghouma, A. Ouederni, M. Jeguirim, Amoxicillin
removal from aqueous solution using activated carbon
prepared by chemical activation of olive stone, Environ. Sci.
Pollut. Res. Int., 24 (2016) 9993–10004.
- R.R. Karri, N.S. Jayakumar, J.N. Sahu, Modelling of fluidisedbed
reactor by differential evolution optimization for phenol
removal using coconut shells based activated carbon, J. Mol.
Liq., 231 (2017) 249–262.
- M. Fujishige, I. Yoshida, Y. Toya, Y. Banba, K. Oshida, Y. Tanaka,
P. Dulyaseree, W. Wongwiriyapan, K. Takeuchi, Preparation
of activated carbon from bamboo-cellulose fiber and its use
for EDLC electrode material, J. Environ. Chem. Eng., 5 (2017)
1801–1808.
- A. Mullick, S. Moulik, S. Bhattacharjee, Removal of hexavalent
chromium from aqueous solutions by low-cost rice husk-based
activated carbon: kinetic and thermodynamic studies, Indian
Chem. Eng., 1 (2017) 1–14.
- M. Kamaraj, P. Umamaheswari, Preparation and characterization
of groundnut shell activated carbon as an efficient adsorbent
for the removal of Methylene blue dye from aqueous solution
with microbiostatic activity, J. Mater. Environ. Sci., 8 (2017)
2019–2025.
- F.T. Foroushani, H. Tavanai, F.A. Hosseini, Microporous and
mesoporous materials an investigation on the effect of KMnO4
on the pore characteristics of pistachio nut shell based activated
carbon, Microporous Mesoporous Mater., 230 (2016) 39–48.
- M. Adib, Z. Al-qodah, C.W.Z. Ngah, Agricultural biowaste
materials as potential sustainable precursors used for
activated carbon production: a review, Renewable Sustainable
Energy Rev., 46 (2015) 218–235.
- K.C. Bedin, A.C. Martins, A.L. Cazetta, O. Pezoti, V.C. Almeida,
KOH-activated carbon prepared from sucrose spherical carbon:
adsorption equilibrium, kinetic and thermodynamic studies
for Methylene blue removal, Chem. Eng. J., 286 (2016) 476–484.
- O. Pezoti, A.L. Cazetta, K.C. Bedin, L.S. Souza, A.C. Martins,
T.L. Silva, O.O.S. Júnior, J.V Visentainer, V.C. Almeida, NaOHactivated
carbon of high surface area produced from guava
seeds as a high-efficiency adsorbent for amoxicillin removal:
kinetic, isotherm and thermodynamic studies, Chem. Eng. J.,
288 (2016) 778–788.
- A.C. Martins, O. Pezoti, A.L. Cazetta, K.C. Bedin, D.A.S. Yamazaki,
G.F.G. Bandoch, T. Asefa, J.V Visentainer, V.C. Almeida,
Removal of tetracycline by NaOH-activated carbon produced
from macadamia nut shells: kinetic and equilibrium studies,
Chem. Eng. J., 260 (2015) 291–299.
- K. Ojha, B. Kumar, A.K. Ganguli, Biomass derived graphenelike
activated and non-activated porous carbon for advanced
supercapacitors, J. Chem. Sci., 129 (2017) 397–404.
- L. Zhou, T. Huang, A. Yu, Three-dimensional flower-shaped
activated porous carbon/sulfur composites as cathode materials
for lithium–sulfur batteries, ACS Sustainable Chem. Eng.,
2 (2014) 2442–2447.
- K. Le Van, T.T.L. Thi, Activated carbon derived from rice
husk by NaOH activation and its application in supercapacitor,
Prog. Nat. Sci. Mater. Int., 24 (2014) 191–198.
- H. Rashidi Nodeh, H. Sereshti, Synthesis of magnetic graphene
oxide doped with strontium titanium trioxide nanoparticles as
a nanocomposite for the removal of antibiotics from aqueous
media, RSC Adv., 6 (2016) 89953–89965.
- M.A. Kamboh, W.A. Wan Ibrahim, H. Rashidi Nodeh,
M.M. Sanagi, S.T.H. Sherazi, The removal of organophosphorus
pesticides from water using a new amino-substituted
calixarene-based magnetic sporopollenin, New J. Chem.,
40 (2016) 3130–3138.
- C. Song, H. Hu, H. Ao, Y. Wu, C. Wu, Removal of parabens and
their chlorinated by-products by periphyton: influence of light
and temperature, Environ. Sci. Pollut. Res., 24 (2017) 5566–5575.
- J.-C.E. Yang, H. Lan, X.-Q. Lin, B. Yuan, M.-L. Fu, Synthetic
conditions-regulated catalytic oxone efficacy of MnOx/SBA-15
towards butyl paraben (BPB) removal under heterogeneous
conditions, Chem. Eng. J., 289 (2016) 296–305.
- M. Forte, L. Mita, R. Perrone, S. Rossi, M. Argirò, D.G. Mita,
M. Guida, M. Portaccio, T. Godievargova, Y. Ivanov, Removal
of methylparaben from synthetic aqueous solutions using
polyacrylonitrile beads: kinetic and equilibrium studies,
Environ. Sci. Pollut. Res., 24 (2017) 1270–1282.
- X. You, C. Piao, L. Chen, Preparation of a magnetic molecularly
imprinted polymer by atom‐transfer radical polymerization for
the extraction of parabens from fruit juices, J. Sep. Sci., 39 (2016)
2831–2838.
- K. Singh, D.H. Lataye, K.L. Wasewar, Removal of fluoride from
aqueous solution by using bael (Aegle marmelos) shell activated
carbon: kinetic, equilibrium and thermodynamic study,
J. Fluorine Chem., 194 (2017) 23–32.
- M.E. Bidhendia, M.A. Gabris, V. Goudarzi, S. Abedyni,
B.H. Juma, H. Sereshtib, M.A. Kamboh, M. Soylak, H.R. Rashidi
Nodeh, Removal of some heavy metal ions from water using
novel adsorbent based on iron oxide-doped sol–gel organicinorganic
hybrid nanocomposite: equilibrium and kinetic
studies, Desal. Water Treat., 147 (2019) 173–182.
- H. Rashidi Nodeh, H. Sereshti, E. Zamiri Afsharian, N. Nouri,
Enhanced removal of phosphate and nitrate ions from aqueous
media using nanosized lanthanum hydrous doped on magnetic
graphene nanocomposite, J. Environ. Manage., 197 (2017).
265–274.
- S.S. Tahir, N. Rauf, Removal of a cationic dye from aqueous
solutions by adsorption onto bentonite clay, Chemosphere,
63 (2006) 1842–1848.