References
- T. Distefano, S. Kelly, Are we in deep water? Water scarcity
and its limits to economic growth, Ecol. Econ., 142 (2017)
130–147.
- H. Nanda, Reverse osmosis-the evolution which never stops,
Filtr. Sep., 55 (2018) 12–13.
- IDA Desalination Yearbook 2018–2019.
- M.A. Abdelkareem, M.E.H. Assad, E.T. Sayed, B. Soudan, Recent
progress in the use of renewable energy sources to power water
desalination plants, Desalination, 435 (2018) 97–113.
- S. Chaudhry, An Overview of Industrial Desalination
Technologies, Proceedings of the ASME Industrial
Demineralization (Desalination): Best Practices & Future
Directions Workshop, Washington, DC, 2013.
- M. Elimelech, W.A. Phillip, The future of seawater desalination:
energy, technology, and the environment, Science, 333 (2011)
712–717.
- WateReuse Association Desalination Committee, Seawater
Desalination Costs White Paper, Water Reuse Association
(WRA), Alexandria, VA, USA, 2012. Available at: https://
watereuse.org/wp-content/uploads/2015/10/WateReuse_Desal_
Cost_White_Paper.pdf.
- M. Li, Reducing specific energy consumption in reverse osmosis
(RO) water desalination: an analysis from first principles,
Desalination, 276 (2011) 128–135.
- B. van der Bruggen, Desalination by distillation and by reverse
osmosis-trends towards the future, Membr. Technol., 2003
(2003) 6–9.
- M. Mandil, H. Farag, M. Naim, M. Attia, Feed salinity and costeffectiveness
of energy recovery in reverse osmosis desalination,
Desalination, 120 (1998) 89–94.
- E. Kadaj, R. Bosleman, Chapter 11 – Energy Recovery Devices in
Membrane Desalination Processes, V.G. Gude, Ed., Renewable
Energy Powered Desalination Handbook: Application and
Thermodynamics, Elsevier, Netherlands, 2018, pp. 415–444.
- A.M. Farooque, A.T.M. Jamaluddin, A.R. Al-Reweli, P.A.M.
Jalaluddin, S.M. Al-Marwani, A.S.A. Al-Mobayed, A.H. Qasim,
Comparative Study of Various Energy Recovery Devices used
in SWRO Process, Saline Water Desalination Research Institute,
Saline Water Conversion Corporation (SWCC), Saudi Arabia,
2004.
- O.M. Al-Hawaj, The work exchanger for reverse osmosis plants,
Desalination, 157 (2003) 23–27.
- E. Oklejas Jr., W.F. Pergande, Integration of advanced highpressure
pumps and energy recovery equipment yields
reduced capital and operating costs of seawater RO systems,
Desalination, 127 (2000) 181–188.
- R.L. Stover, J. Martin, Reverse osmosis and osmotic power
generation with isobaric energy recovery, Desal. Water Treat.,
15 (2010) 267–270.
- A. Cooley, Turbocharged cost savings in RO systems, World
Pumps, 2016 (2016) 36–41.
- A. Bennett, Advances in desalination energy recovery, World
Pumps, 2015 (2015) 30–34.
- R.L. Stover, Retrofits to improve desalination plants, Desal.
Water Treat., 13 (2010) 33–41.
- R. Stover, Energy Recovery Devices in Desalination Applications,
Proceedings of the International Water Association (IWA)
North American Membrane Research Conference, Amherst,
MA, USA, 2008, pp. 10–13.
- Energy Recovery Inc., The Availability Advantage of Reliable
Energy Recovery Technologies, Houston, USA, 2011.
- R.L. Stover, Development of a fourth generation energy
recovery device, A ‘CTO’s notebook’, Desalination, 165 (2004)
313–321.
- K. Liu, J. Deng, F. Ye, Visualization of flow structures in a rotary
type energy recovery device by PIV experiments, Desalination,
433 (2018) 33–40.
- L.J. Hauge, New XPR Technology Expands ERD Market
Potential, Desalination and Water Reuse, East Grinstead, UK,
2011, pp. 32–35.
- SALINO Pressure Center for RO Seawater Desalination, World
Pumps, 2012, p. 8.
- Compact High Energy System for RO Plant, World Pumps,
2013, pp. 27–28.
- Salinnova Inc. Seawater Desalination Module SALINO Pressure
Center Type Series Booklet, Salinnova Inc., Frankenthal,
Germany, 2017. Available at: https://www.salinnova.com/wpcontent/
uploads/salinnova/salino/EN-TSB%20SALINO%20
250%20500-Ref1.pdf.
- Danfoss Inc., Nordborg, Syddanmark Denmark. Available
at: http://high-pressurepumps.danfoss.cn/products/energyrecovery-
devices/isave-erd/#/.
- R. Stover, J. Martin, Titan PX-1200 energy recovery device —
test results from the Inima Los Cabos, Mexico, seawater RO
facility, Desal. Water Treat., 3 (2009) 179–182.
- I.B. Cameron, R.B. Clemente, SWRO with ERI’s PX pressure
exchanger device — a global survey, Desalination, 221 (2008)
136–142.
- S. Mambretti, E. Orsi, S. Gagliardi, R. Stover, Behavior of energy
recovery devices in unsteady flow conditions and application in
the modelling of the Hamma desalination plant, Desalination,
238 (2009) 233–245.
- E.S. Mohamed, G. Papadakis, Design, simulation and economic
analysis of a stand-alone reverse osmosis desalination unit
powered by wind turbines and photovoltaics, Desalination,
164 (2004) 87–97.
- P. Geisler, F.U. Hahnenstein, W. Krumm, T. Peters, Pressure
exchange system for energy recovery in reverse osmosis plants,
Desalination, 122 (1999) 151–156.
- P. Geisler, W. Krumm, T. Peters, Optimization of the energy
demand of reverse osmosis with a pressure-exchange system,
Desalination, 125 (1999) 167–172.
- V. Pikalov, S. Arrieta, A.T. Jones, J. Mamo, Demonstration of an
energy recovery device well suited for modular communitybased
seawater desalination systems: result of Danfoss iSAVE
21 testing, Desal. Water Treat., 51 (2013) 4694–4698.
- Y. Wang, S. Wang, S. Xu, Investigations on characteristics and
efficiency of a positive displacement energy recovery unit,
Desalination, 177 (2005) 179–185.
- S. Shumway, Linear Spool Valve Device for Work Exchanger
System, US Patent, 1998.
- S. Bross, W. Kochanowski, SWRO core hydraulic system:
extension of the SalTec® DT to higher flows and lower energy
consumption, Desalination, 203 (2007) 160–167.
- S. Bross, W. Kochanowski, SWRO core hydraulic module
— the right concept decides in terms of energy consumption
and reliability Part II. Advanced pressure exchanger design,
Desalination, 165 (2004) 351–361.
- B. Peñate, J. de la Fuente, M. Barreto, Operation of the
RO Kinetic® energy recovery system: description and real
experiences, Desalination, 252 (2010) 179–185.
- Aqualyng Inc. Innovations in Global Desalination, Aqualyng
Corporate Brochure, Dubai, United Arab Emirates, 2010.
Available at: http://www.aqualyng.com/en /Downloads/
Downloads.aspx.
- L. Drabløs, Aqualyng™ — a new system for SWRO with
pressure recuperation, Desalination, 139 (2001) 149–153.
- M. Thomson, M.S. Miranda, D. Infield, A small-scale seawater
reverse-osmosis system with excellent energy efficiency over a
wide operating range, Desalination, 153 (2003) 229–236.
- B. Schneider, Selection, operation and control of a work
exchanger energy recovery system based on the Singapore
project, Desalination, 184 (2005) 197–210.
- S. Bross, W. Kochanowski, N. El Maraghy, SWRO-core-hydraulicsystem:
first field test experience, Desalination, 184 (2005)
223–232.
- E.S. Mohamed, G. Papadakis, E. Mathioulakis, V. Belessiotis,
An experimental comparative study of the technical and
economic performance of a small reverse osmosis desalination
system equipped with a hydraulic energy recovery unit,
Desalination, 194 (2006) 239–250.
- S. Veerapaneni, B. Klayman, S. Wang, D. Carlson, K. Ozekin,
Overview of current practices in desalination facilities, IDA J.
Desal. Water Reuse, 3 (2011) 22–29.
- B. Liberman, The Importance of Energy Recovery Devices in
Reverse Osmosis Desalination, IDE Technologies Ltd., Kadima,
Israel, 2003, pp. 1–9.
- S.A. Tyler Nading, Selecting the Best Energy Recovery Device
at RO Plants, CH2M HILL International, Inc., Honolulu, HI,
USA, 2013.
- N.M. Eshoul, B. Agnew, M.A. Al-Weshahi, M.S. Atab, Exergy
analysis of a two-pass reverse osmosis (RO) desalination
unit with and without an energy recovery turbine (ERT) and
pressure exchanger (PX), Energies, 8 (2015) 6910–6925.
- S. Choi, Reduction of energy consumption in seawater reverse
osmosis desalination pilot plant by using energy recovery
devices, Desal. Water Treat., 51 (2013) 766–771.
- B.A. Qureshi, S.M. Zubair, Energy-exergy analysis of seawater
reverse osmosis plants, Desalination, 385 (2016) 138–147.
- R.L. Stover, Seawater reverse osmosis with isobaric energy
recovery devices, Desalination, 203 (2007) 168–175.
- E. Dimitriou, E.S. Mohamed, C. Karavas, G. Papadakis,
Experimental comparison of the performance of two
reverse osmosis desalination units equipped with different
energy recovery devices, Desal. Water Treat., 55 (2015)
3019–3026.
- K. Jeong, Y.G. Lee, S.J. Ki, J.H. Kim, Modeling seawater reverse
osmosis system under degradation conditions of membrane
performance: assessment of isobaric energy recovery devices
and feed pressure control benefits, Desal. Water Treat., 57 (2016)
20210–20218.
- S.A. Urrea, F.D. Reyes, B. Peñate Suárez, J.A.de la Fuente
Bencomo, Technical review, evaluation and efficiency of energy
recovery devices installed in the Canary Islands desalination
plants, Desalination, 450 (2019) 54–63.
- A. Valbjørn, ERD for small SWRO plants, Desalination,
248 (2009) 636–641.
- A. Drak, M. Adato, Energy recovery consideration in brackish
water desalination, Desalination, 339 (2014) 34–39.
- J.P. MacHarg, Retro-fitting existing SWRO systems with a
new energy recovery device, Desalination, 153 (2003) 253–264.
- T. Bozbura, Comparative cost analysis of pressure exchanger
(PX) and turbine type energy recovery devices at seawater
reverse osmosis (SWRO) plants, J. Environ. Prot. Ecol., 12 (2011)
1186–1194.
- S. Shaligram, Brackish water: energy, costs and the use of energy
recovery devices, Filtr. Sep., 48 (2011) 28–30.
- J. Marcos, J. Morgade, Las Palmas’ ERD experience, Desal.
Water Treat., 55 (2015) 3034–3039.
- W.T. Andrews, W.F. Pergande, G.S. McTaggart, Energy
performance enhancements of a 950 m3/d seawater reverse
osmosis unit in Grand Cayman, Desalination, 135 (2001)
195–204.
- C. Lopez-Monllor, S. Rodríguez-Gómez, R. Iglesias-Esteban,
I. del Río-Marrero, J.J. Rodríguez-González, R. Jiménez-Egea,
R. Koehn, Analysis of the influence of the configuration in ERD
retrofit in two-stage SWRO trains, J. Membr. Sci., 503 (2016)
116–123.
- M.A. Jamil, B.A. Qureshi, S.M. Zubair, Exergo-economic
analysis of a seawater reverse osmosis desalination plant with
various retrofit options, Desalination, 401 (2017) 88–98.
- B. Peñate, L. García-Rodríguez, Energy optimisation of existing
SWRO (seawater reverse osmosis) plants with ERT (energy
recovery turbines): technical and thermoeconomic assessment,
Energy, 36 (2011) 613–626.
- A. Goto, M. Shinoda, T. Takemura, Mixing Control in an
Isobaric Energy Recovery Device of Seawater Reverse Osmosis
Desalination System, ASME 2017 Fluids Engineering Division
Summer Meeting, American Society of Mechanical Engineers,
Waikoloa, Hawaii, USA, 2017, pp. V01BT8A003–V01BT08A.
- L.M. Wu, Y. Wang, E.L. Xu, J.N. Wu, S.C. Xu, Employing
groove-textured surface to improve operational performance
of rotary energy recovery device in membrane desalination
system, Desalination, 369 (2015) 91–96.
- Y. Wang, Y. Duan, J. Zhou, S. Xu, S. Wang, Introducing prepressurization/
depressurization grooves to diminish flow
fluctuations of a rotary energy recovery device: numerical
simulation and validating experiment, Desalination, 413 (2017)
1–9.
- E. Xu, X. Jiang, Z. Duan, L. Xie, S. Wang, Effect of rectangular
damping groove on flow fluctuation and pressure pulsation for
rotary energy recovery device through CFD simulation, Desal.
Water Treat., 115 (2018) 97–105.
- E. Xu, Y. Wang, L. Wu, S. Xu, Y. Wang, S. Wang, Computational
fluid dynamics simulation of brine–seawater mixing in a
rotary energy recovery device, Ind. Eng. Chem. Res., 53 (2014)
18304–18310.
- E. Xu, Y. Wang, J. Zhou, S. Xu, S. Wang, Theoretical investigations
on rotor speed of the self-driven rotary energy recovery device
through CFD simulation, Desalination, 398 (2016) 189–197.
- H. Bie, Y. Jia, W. An, C. Li, J. Zhu, CFD Simulation of the
effects of extended angle on the mixing performances of rotary
pressure exchanger, Chem. Eng., 61 (2017) 835–840.
- N. Liu, Z. Liu, Y. Li, L. Sang, Studies on leakage characteristics
and efficiency of a fully-rotary valve energy recovery device by
CFD simulation, Desalination, 415 (2017) 40–48.
- N. Liu, Z. Liu, Y. Li, L. Sang, Development and experimental
studies on a fully-rotary valve energy recovery device for
SWRO desalination system, Desalination, 397 (2016) 67–74.
- N. Liu, Z. Liu, Y. Li, L. Sang, An optimization study on the seal
structure of fully-rotary valve energy recovery device by CFD,
Desalination, 459 (2019) 46–58.
- O. Al-Hawaj, Theoretical analysis of sliding vane energy
recovery device, Desal. Water Treat., 36 (2011) 354–362.
- F. Yin, S. Nie, H. Ji, F. Lou, Numerical study of structure
parameters on energy transfer and flow characteristics of
integrated energy recovery and pressure boost device, Desal.
Water Treat., 131 (2018) 141–154.
- K. Liu, J. Deng, B. Yang, Research on Flow Field of a Fixed
Duct in a Rotary Energy Recovery Device, ASME 2017 Fluids
Engineering Division Summer Meeting, American Society
of Mechanical Engineers, Vail, Colorado, USA, 2017, pp.
V01BT8A001–V01BT08A.
- K. Liu, J. Deng, F. Ye, Numerical simulation of flow structures
in a rotary type energy recovery device, Desalination, 449 (2019)
101–110.
- D. Song, Y. Wang, S. Xu, Z. Wang, H. Liu, S. Wang, Control logic
and strategy for emergency condition of piston-type energy
recovery device, Desalination, 348 (2014) 1–7.
- D. Song, Y. Wang, S. Xu, J. Gao, Y. Ren, S. Wang, Analysis,
experiment and application of a power-saving actuator applied
in the piston-type energy recovery device, Desalination,
361 (2015) 65–71.
- J. Zhou, Y. Wang, Z. Feng, Z. He, S. Xu, Effective modifications
of reciprocating-switcher energy recovery device by adopting
pilot valve plates to decrease the switching load and fluid
fluctuations, Desalination, 462 (2019) 39–47.
- F. Ye, J. Deng, Z. Cao, B. Yang, Study of efficiency in a sliding
vane pressure exchanger, Chem. Eng. Trans., 61 (2017) 841–846.
- J. Zhou, Y. Wang, Y. Duan, J. Tian, S. Xu, Capacity flexibility
evaluation of a reciprocating-switcher energy recovery device
for SWRO desalination system, Desalination, 416 (2017) 45–53.
- A. Bermudez-Contreras, M. Thomson, Modified operation
of a small scale energy recovery device for seawater reverse
osmosis, Desal. Water Treat., 13 (2010) 195–202.
- Z. Wang, Y. Wang, Y. Zhang, B. Qi, S. Xu, S. Wang, Pilot tests
of fluid-switcher energy recovery device for seawater reverse
osmosis desalination system, Desal. Water Treat., 48 (2012)
310–314.
- X. Wang, Y. Wang, J. Wang, S. Xu, Y. Wang, S. Wang, Comparative
study on stand-alone and parallel operating schemes of energy
recovery device for SWRO system, Desalination, 254 (2010)
170–174.
- B. Qi, Y. Wang, Z. Wang, Y. Zhang, S. Xu, S. Wang, Theoretical
investigation on internal leakage and its effect on the efficiency
of fluid switcher-energy recovery device for reverse osmosis
desalting plant, Chin. J. Chem. Eng., 21 (2013) 1216–1223.
- Y. Wang, Y. Ren, J. Zhou, E. Xu, S. Xu, Functionality test of an
innovative single-cylinder energy recovery device for SWRO
desalination system, Desalination, 388 (2016) 22–28.
- A.A. Tofigh, G.D. Najafpour, Technical and economical
evaluation of desalination processes for potable water from
seawater, Middle-East J. Sci. Res., 12 (2012) 42–45.
- B. Sauvet-Goichon, Ashkelon desalination plant-a successful
challenge, Desalination, 203 (2007) 75–81.
- V. García Molina, M. Taub, L. Yohay, M. Busch, Long term
membrane process and performance in Ashkelon seawater
reverse osmosis desalination plant, Desal. Water Treat.,
31 (2011) 115–120.
- M. Taub, The World’s Largest SWRO Desalination Plant 15
Months of Operational Experience, IDA World Congress
Maspalomas, Gran Canaria–Spain, 2007.
- S.A.N. Zealand, Perth Seawater Desalination Plant, SUEZ:
Rhodes NSW, Australia. Available at: http://www.degremont.
com.au/media/general/Perth_Seawater_Desalination_Plant
_1.pdf (accessed 9/24/2018).
- D.W. Solutions, Reverse osmosis: membranes help beat the
drought, Filtr. Sep., 46 (2009) 23–24.
- M.A. Sanz, C. Miguel, R. Arbos, M. Munoz, J. Mesa, Two Years
in Barcelona with Tap Water from SWRO Llobregat Plant, IDA
World Congress, Perth, Australia, 2011.
- M. Faigon, Y. Egozy, D. Hefer, M. Ilevicky, Y. Pinhas, Hadera
desalination plant two years of operation, Desal. Water Treat.,
51 (2013) 132–139.
- J. Kim, S. Hong, A novel single-pass reverse osmosis
configuration for high-purity water production and low
energy consumption in seawater desalination, Desalination,
429 (2018) 142–154.
- J. Evans Robert, Sustainable supply, Civ. Eng., 81 (2011) 50–57.
- I. El Saliby, Y. Okour, H.K. Shon, J. Kandasamy,
I.S. Kim, Desalination plants in Australia, review and facts,
Desalination, 247 (2009) 1–14.
- Global Water Award, Global Water Intelligence, Oxford, UK,
2012. Available at: https://globalwaterawards.
com/2012-winn
ers/#DesalinationPlantoftheYear.
- B. Blanco, ERI helps make fresh water production more
affordable, Membr. Technol., 2010 (2010) 8.
- C. Hurn, T. Hagedorn, Tuaspring Sea Water Desalination
with CCPP in Singapore: An Example for Sustainable Power
Generation, PowerGen Asia Bangkok, 2012.
- F.C. Looi, Assessment of Future Water Resources Sustainability
Based on 4 National Taps of Singapore.
- M. Faigon, Success behind advanced SWRO desalination
plant, Filtr. Sep., 53 (2016) 29–31.
- A. Efraty, Closed circuit desalination series no-6: conventional
RO compared with the conceptually different new closed
circuit desalination technology, Desal. Water Treat., 41 (2012)
279–295.
- E. Lapuente, Full cost in desalination: a case study of the
Segura River Basin, Desalination, 300 (2012) 40–45.
- acuaMed Inc. Acuamed Annual Report, acuaMed Inc.,
Madrid, Spain, 2013. Available at: http://www.acuamed.es/
media/memorias/eng/report13.pdf.
- V. Martínez-Alvarez, M.J. González-Ortega, B. Martin-Gorriz,
M. Soto-García, J.F. Maestre-Valero, Seawater Desalination for
Crop Irrigation—Current Status and Perspectives, Emerging
Technologies for Sustainable Desalination Handbook,
Elsevier, 2018, pp. 461–492.
- IDA Desalination Yearbook 2016–2017, Global Water
Intelligence, Oxford, UK.
- N. Voutchkov, CO2 neutral seawater desalination, Environ.
Sci. Eng., 22 (2009) 22–24.
- Global Water Award, Global Water Intelligence, Oxford,
UK, 2017. Available at: https://globalwaterawards.com/2017-industrial-desalination-plant-of-the-year/.