References

  1. Y.T. Tu, Y. Xiong, S.H. Tian, L.J. Kong, C. Descorme, Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts, J. Hazard. Mater., 276 (2014) 88–96.
  2. R.K. Garlapalli, B. Wirth, M.T. Reza, Pyrolysis of hydrochar from digestate: effect of hydrothermal carbonization and pyrolysis temperatures on pyrochar formation, Bioresour. Technol., 220 (2016) 168–174.
  3. J. Havukainen, M.X. Zhan, J. Dong, M. Liikanen, I. Deviatkin, X.D. Li, M. Horttanainen, Environmental impact assessment of municipal solid waste management incorporating mechanical treatment of waste and incineration in Hangzhou, China, J. Cleaner Prod., 141 (2017) 453–461.
  4. X.D. Wang, Q.Q. Chi, X.J. Liu, Y. Wang, Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge, Chemosphere, 216 (2019) 698–706.
  5. P. Devi, A.K. Saroha, Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals, Bioresour. Technol., 162 (2014) 308–315.
  6. H. Yoshida, M.T. Hoeve, T.H. Christensen, S. Bruun, L.S. Jensen, C. Scheutz, Life cycle assessment of sewage sludge management options including long-term impacts after land application, J. Cleaner Prod., 174 (2018) 538–547.
  7. J. Racek, J. Sevcik, T. Chorazy, J. Kucerik, P. Hlavinek, Biochar – recovery material from pyrolysis of sewage sludge: a review, Waste Biomass Valorization, 11 (2020) 3677–3709.
  8. A.G. Capodaglio, A. Callegari, Feedstock and process influence on biodiesel produced from waste sewage sludge, J. Environ. Manage., 216 (2018) 176–182.
  9. Z.C. Lei, W.M. Feng, C.H. Feng, W.J. Zhou, C.H. Wei, X. Wang, Nitrified coke wastewater sludge flocs: an attractive precursor for N,S dual-doped graphene-like carbon with ultrahigh capacitance and oxygen reduction performance, J. Mater. Chem. A, 5 (2017) 2012–2020.
  10. B. Bratina, A. Šorgo, J. Kramberger, U. Ajdnik, L.F. Zemljič, J. Ekart, R. Šafarič, From municipal/industrial wastewater sludge and FOG to fertilizer: a proposal for economic sustainable sludge management, J. Environ. Manage., 183 (2016) 1009–1025.
  11. S.H. Ho, Y.D. Chen, Z.K. Yang, D. Nagarajan, J.S. Chang, N.Q. Ren, High-efficiency removal of lead from wastewater by biochar derived from anaerobic digestion sludge, Bioresour. Technol., 246 (2017) 142–149.
  12. B. Rincón, M.C. Portillo, J.M. González, R. Borja, Microbial community dynamics in the two-stage anaerobic digestion process of two-phase olive mill residue, Int. J. Environ. Sci. Technol., 10 (2013) 635–644.
  13. H. Carrère, C. Dumas, A. Battimelli, D.J. Batstone, J.P. Delgenès, J.P. Steyer, I. Ferrer, Pretreatment methods to improve sludge anaerobic degradability: a review, J. Hazard. Mater., 183 (2010) 1–15.
  14. G. Yang, G.M. Zhang, H.C. Wang, Current state of sludge production, management, treatment and disposal in China, Water Res., 78 (2015) 60–73.
  15. Y.M. Wang, H.Z. Wei, Y. Zhao, W.J. Sun, C.L. Sun, Low temperature modified sludge-derived carbon catalysts for efficient catalytic wet peroxide oxidation of m-cresol, Green Chem., 19 (2017) 1362–1370.
  16. L. Yu, W.T. Jiang, Y. Yu, C.L. Sun, Effects of dilution ratio and Fe0 dosing on biohydrogen production from dewatered sludge by hydrothermal pretreatment, Environ. Technol., 35 (2014) 3092–3104.
  17. H. Pan, Effects of liquefaction time and temperature on heavy metal removal and distribution in liquefied CCA-treated wood sludge, Chemosphere, 80 (2010) 438–444.
  18. W.S. Shi, C.G. Liu, D.H. Ding, Z.F. Lei, Y.N. Yang, C.P. Feng, Z.Y. Zhang, Immobilization of heavy metals in sewage sludge by using subcritical water technology, Bioresour. Technol., 137 (2013) 18–24.
  19. K. Xiao, Y. Chen, X. Jiang, Q. Yang, W.Y. Seow, W.Y. Zhu, Y. Zhou, Variations in physical, chemical and biological properties in relation to sludge dewaterability under Fe(II) – oxone conditioning, Water Res., 109 (2016) 13–23.
  20. K. Song, X. Zhou, Y.Q. Liu, G.-J. Xie, D.B. Wang, T.T. Zhang, C.S. Liu, P. Liu, B.B. Zhou, Q.L. Wang, Improving dewaterability of anaerobically digested sludge by combination of persulfate and zero valent iron, Chem. Eng. J., 295 (2016) 436–442.
  21. B.J. Ni, X.F. Yan, J. Sun, X.M. Chen, L. Peng, W. Wei, D.B. Wang, S. Mao, X.H. Dai, Q.L. Wang, Persulfate and zero valent iron combined conditioning as a sustainable technique for enhancing dewaterability of aerobically digested sludge, Chemosphere, 232 (2019) 45–53.
  22. X. Zhou, Q.L. Wang, G.M. Jiang, P. Liu, Z.G. Yuan, A novel conditioning process for enhancing dewaterability of waste activated sludge by combination of zero-valent iron and persulfate, Bioresour. Technol., 185 (2015) 416–420.
  23. Y.-D. Chen, S.-H. Ho, D.W. Wang, Z.-S. Wei, J.-S. Chang, N.-Q. Ren, Lead removal by a magnetic biochar derived from persulfate-ZVI treated sludge together with one-pot pyrolysis, Bioresour. Technol., 247 (2018) 463–470.
  24. H.B. Liu, H. Xiao, B. Fu, H. Liu, Feasibility of sludge deepdewatering with sawdust conditioning for incineration disposal without energy input, Chem. Eng. J., 313 (2017) 655–662.
  25. Q.F. Yang, K. Dussan, R.F.D. Monaghan, X.M. Zhan, Energy recovery from thermal treatment of dewatered sludge in wastewater treatment plants, Water Sci. Technol., 74 (2016) 672–680.
  26. A. Zaker, Z. Chen, X.L. Wang, Q. Zhang, Microwave-assisted pyrolysis of sewage sludge: a review, Fuel Process. Technol., 187 (2019) 84–104.
  27. A. Callegari, P. Hlavinek, A.G. Capodaglio, Production of energy (biodiesel) and recovery of materials (biochar) from pyrolysis of urban waste sludge, Rev. Ambiente Água, 13 (2018) 1–14.
  28. A. Callegari, A.G. Capodaglio, Properties and beneficial uses of (bio)chars, with special attention to products from sewage sludge pyrolysis, Resources, 7 (2018) 1–22.
  29. J.A. Menéndez, A. Domínguez, M. Inguanzo, J.J. Pis, Microwaveinduced drying, pyrolysis and gasification (MWDPG) of sewage sludge: vitrification of the solid residue, J. Anal. Appl. Pyrolysis, 74 (2005) 406–412.
  30. L. Fang, N.N. Yuan, Y.G. Wu, X.X. Zhao, H.Y. Sun, Evolution of heavy metals leachability and speciation in residues of sewage sludge treated by microwave assisted pyrolysis, Appl. Mech. Mater., 178–181 (2012) 833–837.
  31. J. Raček, J. Ševčík, R. Komendová, J. Kučerík, P. Hlavínek, Heavy metal fixation in biochar after microwave pyrolysis of sewage sludge, Desal. Water Treat., 159 (2019) 79–92.
  32. K.H. Lin, J.Y. Zeng, H.L. Chiang, Microwave pyrolysis of sludge for potential use as land application and biofuel, J. Chem. Technol. Biotechnol., 95 (2020) 975–984.
  33. T. Chen, Y.X. Zhang, H.T. Wang, W.J. Lu, Z.Y. Zhou, Y.C. Zhang, L.L. Ren, Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge, Bioresour. Technol., 164 (2015) 47–54.
  34. K. Mahapatra, D.S. Ramteke, L.J. Paliwal, Production of activated carbon from sludge of food processing industry under controlled pyrolysis and its application for methylene blue removal, J. Anal. Appl. Pyrolysis, 95 (2012) 79–86.
  35. L. Gu, N.W. Zhu, P. Zhou, Preparation of sludge derived magnetic porous carbon and their application in Fenton-like degradation of 1-diazo-2-naphthol-4-sulfonic acid, Bioresour. Technol., 118 (2012) 638–642.
  36. M.K. Hossain, V. Strezov, K.Y. Chan, A. Ziolkowski, P.F. Nelson, Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar, J. Environ. Manage., 92 (2011) 223–228.
  37. A. Funke, F. Ziegler, Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering, Biofuels, Bioprod. Biorefin., 4 (2010) 160–177.
  38. J.H. Yuan, R.K. Xu, H. Zhang, The forms of alkalis in the biochar produced from crop residues at different temperatures, Bioresour. Technol., 102 (2011) 3488–3497.
  39. H. Zheng, Z.Y. Wang, X. Deng, J. Zhao, Y. Luo, J. Novak, S. Herbert, B.S. Xing, Characteristics and nutrient values of biochars produced from giant reed at different temperatures, Bioresour. Technol., 130 (2012) 463–471.
  40. M.C. Ncibi, V. Jeanne-Rose, B. Mahjoub, C. Jean-Marius, J. Lambert, J.J. Ehrhardt, Y. Bercion, M. Seffen, S. Gaspard, Preparation and characterisation of raw chars and physically activated carbons derived from marine Posidonia oceanica (L.) fibres, J. Hazard. Mater., 165 (2009) 240–249.
  41. J.F. González, S. Román, J.M. Encinar, G. Martínez, Pyrolysis of various biomass residues and char utilization for the production of activated carbons, J. Anal. Appl. Pyrolysis, 85 (2009) 134–141.
  42. X.L. Xi, X.L. Guo, Preparation of bio-charcoal from sewage sludge and its performance on removal of Cr(VI) from aqueous solutions, J. Mol. Liq., 183 (2013) 26–30.
  43. Y.M. Wang, H.Z. Wei, Y. Zhao, W.J. Sun, C.L. Sun, The optimization, kinetics and mechanism of m-cresol degradation via catalytic wet peroxide oxidation with sludgederived carbon catalyst, J. Hazard. Mater., 326 (2017) 36–46.
  44. Y. Yu, H.Z. Wei, L. Yu, T. Zhang, S. Wang, X.N. Li, J.H. Wang, C.L. Sun, Surface modification of sewage sludge derived carbonaceous catalyst for m-cresol catalytic wet peroxide oxidation and degradation mechanism, RSC Adv., 5 (2015) 41867–41876.
  45. M.A. Lillo-Ródenas, A. Ros, E. Fuente, M.A. Montes-Morán, M.J. Martin, A. Linares-Solano, Further insights into the activation process of sewage sludge-based precursors by alkaline hydroxides, Chem. Eng. J., 142 (2008) 168–174.
  46. V.M. Monsalvo, A.F. Mohedano, J.J. Rodriguez, Activated carbons from sewage sludge: application to aqueous-phase adsorption of 4-chlorophenol, Desalination, 277 (2011) 377–382.
  47. H.R. Hwang, W.J. Choi, T.J. Kim, J.S. Kim, K.J. Oh, The preparation of an adsorbent from mixtures of sewage sludge and coal-tar pitch using an alkaline hydroxide activation agent, J. Anal. Appl. Pyrolysis, 83 (2008) 220–226.
  48. T. Nunthaprechachan, S. Pengpanich, M. Hunsom, Adsorptive desulfurization of dibenzothiophene by sewage sludge-derived activated carbon, Chem. Eng. J., 228 (2013) 263–271.
  49. S. Jeyaseelan, L.G. Qing, Development of adsorbent/catalyst from municipal wastewater sludge, Water Sci. Technol., 34 (1996) 499–505.
  50. S.S. Fan, Y. Wang, Z. Wang, J. Tang, J. Tang, X.D. Li, Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: adsorption kinetics, equilibrium, thermodynamics and mechanism, J. Environ. Chem. Eng., 5 (2017) 601–611.
  51. L.H. Liu, Y. Lin, Y.Y. Liu, H. Zhu, Q. He, Removal of methylene blue from aqueous solutions by sewage sludge based granular activated carbon: adsorption equilibrium, kinetics, and thermodynamics, J. Chem. Eng. Data, 58 (2013) 2248–2253.
  52. A.F.M. Streit, L.N. Côrtes, S.P. Druzian, M. Godinho, G.C. Collazzo, D. Perondi, G.L. Dotto, Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions, Sci. Total Environ., 660 (2019) 277–287.
  53. S. Rio, C. Faur-Brasquet, L.L. Coq, P. Courcoux, P. Le Cloirec, Experimental design methodology for the preparation of carbonaceous sorbents from sewage sludge by chemical activation––application to air and water treatments, Chemosphere, 58 (2005) 423–437.
  54. F. Rozada, M. Otero, A. Morán, A.I. García, Adsorption of heavy metals onto sewage sludge-derived materials, Bioresour. Technol., 99 (2008) 6332–6338.
  55. S. Rio, C. Faur-Brasquet, L. Le Coq, P. Le Cloirec, Structure characterization and adsorption properties of pyrolyzed sewage sludge, Environ. Sci. Technol., 39 (2014) 4249–4257.
  56. S. Senthilkumaar, P.R. Varadarajan, K. Porkodi, C.V. Subbhuraam, Adsorption of methylene blue onto jute fiber carbon: kinetics and equilibrium studies, J. Colloid Interface Sci., 284 (2005) 78–82.
  57. B.H. Hameed, A.T.M. Din, A.L. Ahmad, Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies, J. Hazard. Mater., 141 (2007) 819–825.
  58. M. Seredych, T.J. Bandosz, Removal of cationic and ionic dyes on industrial−municipal sludge based composite adsorbents, Ind. Eng. Chem. Res., 46 (2007) 1786–1793.
  59. M. Seredych, T.J. Bandosz, Removal of copper on composite sewage sludge/industrial sludge-based adsorbents: the role of surface chemistry, J. Colloid Interface Sci., 302 (2006) 379–388.
  60. L. Maa, C.Y. Jin, L.Y. An, L. Huang, L.J. Li, H.B. Jin, B. Liang, H.Z. Wei, C.L. Sun, Preliminary investigation of the degradation mechanism of o, m and p-cresol using sludge-derived carbon nanosheets by catalytic oxidation based on quantum chemistry, Catal. Commun., 120 (2019) 59–65.
  61. Q. Huang, S. Song, Z. Chen, B.W. Hu, J.R. Chen, X.K. Wang, Biochar-based materials and their applications in removal of organic contaminants from wastewater: state-of-the-art review, Biochar, 1 (2019) 45–73.
  62. E.F. Mohamed, C. Andriantsiferana, A.M. Wilhelm, H. Delmas, Competitive adsorption of phenolic compounds from aqueous solution using sludge-based activated carbon, Environ. Technol., 32 (2011) 1325–1336.
  63. Y. Yu, H.Z. Wei, L. Yu, B. Gu, X.R. Li, X. Rong, Y. Zhao, L.L. Chen, C.L. Sun, Catalytic wet air oxidation of m-cresol over a surfacemodified sewage sludge-derived carbonaceous catalyst, Catal. Sci. Technol., 6 (2016) 1085–1093.
  64. G. Wen, Z.H. Pan, J. Ma, Z.Q. Liu, L. Zhao, J.J. Li, Reuse of sewage sludge as a catalyst in ozonation—efficiency for the removal of oxalic acid and the control of bromate formation, J. Hazard. Mater., 239–240 (2012) 381–388.
  65. Y. Yu, H.Z. Wei, L. Yu, W. Wang, Y. Zhao, B. Gu, C.L. Sun, Sewage-sludge-derived carbonaceous materials for catalytic wet hydrogen peroxide oxidation of m-cresol in batch and continuous reactors, Environ. Technol., 37 (2016) 153–162.
  66. R.R.N. Marques, F. Stüber, K.M. Smith, A. Fabregat, C. Bengoa, J. Font, A. Fortuny, S. Pullket, G.D. Fowler, N.J.D. Graham, Sewage sludge based catalysts for catalytic wet air oxidation of phenol: preparation, characterisation and catalytic performance, Appl. Catal., B, 101 (2011) 306–316.
  67. S.Z. Wang, J.L. Wang, Activation of peroxymonosulfate by sludge-derived biochar for the degradation of triclosan in water and wastewater, Chem. Eng. J., 356 (2019) 350–358.
  68. B.C. Huang, J. Jiang, G.X. Huang, H.Q. Yu, Sludge biocharbased catalysts for improved pollutant degradation by activating peroxymonosulfate, J. Mater. Chem. A, 6 (2018) 8978–8985.
  69. S.J. Yuan, X.H. Dai, Facile synthesis of sewage sludge-derived mesoporous material as an efficient and stable heterogeneous catalyst for photo-Fenton reaction, Appl. Catal., B, 154–155 (2014) 252–258.
  70. A. Khataee, B. Kayan, P. Gholami, D. Kalderis, S. Akay, L. Dinpazhoh, Sonocatalytic degradation of Reactive Yellow 39 using synthesized ZrO2 nanoparticles on biochar, Ultrason. Sonochem., 39 (2017) 540–549.
  71. F.Z. Zhang, K.Y. Wu, H.T. Zhou, Y. Hu, P. Sergei, H.Z. Wu, C.H. Wei, Ozonation of aqueous phenol catalyzed by biochar produced from sludge obtained in the treatment of coking wastewater, J. Environ. Manage., 224 (2018) 376–386.
  72. H.F. Wen, L. Gu, H.X. Yu, X.B. Qiao, D.F. Zhang, J.F. Ye, Radical assisted iron impregnation on preparing sewage sludge derived Fe/carbon as highly stable catalyst for heterogeneous Fenton reaction, Chem. Eng. J., 352 (2018) 837–846.
  73. Y.T. Tu, S.H. Tian, L.J. Kong, Y. Xiong, Co-catalytic effect of sewage sludge-derived char as the support of Fenton-like catalyst, Chem. Eng. J., 185–186 (2012) 44–51.
  74. B.L. Hou, H.J. Han, S.Y. Jia, H.F. Zhuang, P. Xu, K. Li, Threedimensional heterogeneous electro-Fenton oxidation of biologically pretreated coal gasification wastewater using sludge derived carbon as catalytic particle electrodes and catalyst, J. Taiwan Inst. Chem. Eng., 60 (2016) 352–360.
  75. X.P. Wang, L. Gu, P. Zhou, N. Zhu, C.X. Li, H. Tao, H.F. Wen, D.F. Zhang, Pyrolytic temperature dependent conversion of sewage sludge to carbon catalyst and their performance in persulfate degradation of 2-Naphthol, Chem. Eng. J., 324 (2017) 203–215.
  76. H.F. Zhuang, H.J. Han, B.L. Hou, S.Y. Jia, Q. Zhao, Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts, Bioresour. Technol., 166 (2014) 178–186.
  77. S. Esplugas, S. Contreras, D.F. Ollis, Engineering aspects of the integration of chemical and biological oxidation: simple mechanistic models for the oxidation treatment, J. Environ. Eng., 130 (2004) 967–974.
  78. F. Lian, B.S. Xing, Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk, Environ. Sci. Technol., 51 (2017) 13517–13532.
  79. P.S. Bhupinder, A.L. Cowie, R.J. Smernik, Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature, Environ. Sci. Technol., 46 (2012) 11770–11778.
  80. H. Li, S.A.A. Mahyoub, W.J. Liao, S.Q. Xia, H.C. Zhao, M.Y. Guo, P.S. Ma, Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue, Bioresour. Technol., 223 (2017) 20–26.
  81. S. Bolognesi, G. Bernardi, A. Callegari, D. Dondi, A.G. Capodaglio, Biochar production from sewage sludge and microalgae mixtures: properties, sustainability and possible role in circular economy, Biomass Convers. Biorefin., (2019), https://doi. org/10.1007/s13399-019-00572-5.
  82. Y.Q. Yang, M.H. Cui, Y.G. Ren, J.C. Guo, Z.Y. Zheng, H. Liu, Towards understanding the mechanism of heavy metals immobilization in biochar derived from co-pyrolysis of sawdust and sewage sludge, Bull. Environ. Contam. Toxicol., 104 (2020) 489–496.
  83. Q. Dong, S.P. Zhang, B. Wu, M. Pi, Y.Q. Xiong, H.Y. Zhang, Co-pyrolysis of sewage sludge and rice straw: thermal behavior and char characteristic evaluations, Energy Fuels, 34 (2019) 607–615.
  84. Y.Q. Yi, G.Q. Tu, D.Y. Zhao, P.E. Tsang, Z.Q. Fang, Pyrolysis of different biomass pre-impregnated with steel pickling waste liquor to prepare magnetic biochars and their use for the degradation of metronidazole, Bioresour. Technol., 89 (2019) 121613.
  85. K.M. Smith, G.D. Fowler, S. Pullket, N.J.D. Graham, The production of attrition resistant, sewage–sludge derived, granular activated carbon, Sep. Purif. Technol., 98 (2012) 240–248.
  86. X.H. Hu, J.Y. Xu, M.S. Wu, J.X. Xing, W.S. Bi, K. Wang, J.F. Ma, X. Liu, Effects of biomass pre-pyrolysis and pyrolysis temperature on magnetic biochar properties, J. Anal. Appl. Pyrolysis, 127 (2017) 196–202.
  87. S.D. Guo, H. Liang, L.M. Bai, F.S. Qu, A. Ding, B. Ji, X. Wang, G.B. Li, Synergistic effects of wheat straw powder and persulfate/Fe(II) on enhancing sludge dewaterability, Chemosphere, 215 (2019) 333–341.