References
- F. Tohidi, Z. Cai, Fate and mass balance of triclosan and its
degradation products: comparison of three different types of
wastewater treatments and aerobic/anaerobic sludge digestion,
J. Hazard. Mater., 323(Pt A) (2017) 329–340.
- G.-G. Ying, X.-Y. Yu, R.S. Kookana, Biological degradation of
triclocarban and triclosan in a soil under aerobic and anaerobic
conditions and comparison with environmental fate modelling,
Environ. Pollut., 150 (2007) 300–305.
- G.-G. Ying, R.S. Kookana, Triclosan in wastewaters and biosolids
from Australian wastewater treatment plants, Environ. Int.,
33 (2007) 199–205.
- L. Xin, Y. Sun, J. Feng, J. Wang, D. He, Degradation of
triclosan in aqueous solution by dielectric barrier discharge
plasma combined with activated carbon fibers, Chemosphere,
144 (2016) 855–863.
- X. Hu, Z. Cheng, Z. Sun, H. Zhu, Adsorption of diclofenac and
triclosan in aqueous solution by purified multi-walled carbon
nanotubes, Pol. J. Environ. Stud., 26 (2017) 87–95.
- J. López-Morales, O. Perales-Pérez, F. Román-Velázquez,
Sorption of triclosan onto tyre crumb rubber, Adsorpt. Sci.
Technol., 30 (2012) 831–845.
- A.B. Dann, A. Hontela, Triclosan: environmental exposure,
toxicity and mechanisms of action, J. Appl. Toxicol., 31 (2011)
285–311.
- S. Liu, R. Xu, Adsorption characteristics of triclosan on chitosan/
poly(vinyl alcohol) composite nanofibrous membranes, Appl.
Mech. Mater., 448–453 (2014) 134–138.
- J.C. Carlson, M.I. Stefan, J.M. Parnis, C.D. Metcalfe, Direct UV
photolysis of selected pharmaceuticals, personal care products
and endocrine disruptors in aqueous solution, Water Res.,
84 (2015) 350–361.
- C. Zhao, H. Xie, J. Xu, X. Xu, J. Zhang, Z. Hu, C. Liu, S. Liang,
Q. Wang, J. Wang, Bacterial community variation and microbial
mechanism of triclosan (TCS) removal by constructed wetlands
with different types of plants, Sci. Total Environ., 505 (2015)
633–639.
- R. Xu, Y. Si, X. Wu, F. Li, B. Zhang, Triclosan removal by laccase
immobilized on mesoporous nanofibers: strong adsorption
and efficient degradation, Chem. Eng. J., 255 (2014) 63–70.
- S. Wang, X. Wang, K. Poon, Y. Wang, S. Li, H. Liu, S. Lin, Z. Cai,
Removal and reductive dechlorination of triclosan by Chlorella
pyrenoidosa, Chemosphere, 92 (2013) 1498–1505.
- B. Ertit Taştan, G. Dönmez, Biodegradation of pesticide triclosan
by A. versicolor in simulated wastewater and semi-synthetic
media, Pestic. Biochem. Physiol., 118 (2015) 33–37.
- Y.-Z. Ren, M. Franke, F. Anschuetz, B. Ondruschka, A. Ignaszak,
P. Braeutigam, Sonoelectrochemical degradation of triclosan in
water, Ultrason. Sonochem., 21 (2014) 2020–2025.
- J. Chen, R. Qu, X. Pan, Z. Wang, Oxidative degradation of
triclosan by potassium permanganate: kinetics, degradation
products, reaction mechanism, and toxicity evaluation, Water
Res., 103 (2016) 215–223.
- N.K.E. Mohd Khori, T. Hadibarata, M.S. Elshikh, A. Ahmed
Al-Ghamdi, S. Salmiati, Z. Yusop, Triclosan removal by
adsorption using activated carbon derived from waste biomass:
isotherms and kinetic studies, J. Chin. Chem. Soc., 65 (2018)
951–959.
- S.K. Behera, S.-Y. Oh, H.-S. Park, Sorption of triclosan onto
activated carbon, kaolinite and montmorillonite: effects of pH,
ionic strength, and humic acid, J. Hazard. Mater., 179 (2010)
684–691.
- N.A. Rahmat, A.A. Ali, Salmiati, N. Hussain, M.S. Muhamad,
R.A. Kristanti, T. Hadibarata, Removal of Remazol brilliant
blue R from aqueous solution by adsorption using pineapple
leaf powder and lime peel powder, Water Air Soil Pollut., 227
(2016) 105.
- I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Enhancement of
basic dye adsorption uptake from aqueous solutions using
chemically modified oil palm shell activated carbon, Colloids
Surf., A, 318 (2008) 88–96.
- T.S.Y. Choong, T.N. Wong, T.G. Chuah, A. Idris, Film-poreconcentration-
dependent surface diffusion model for the
adsorption of dye onto palm kernel shell activated carbon,
J. Colloid Interface Sci., 301 (2006) 436–440.
- A.R. Hidayu, N. Muda, Preparation and characterization of
impregnated activated carbon from palm kernel shell and
coconut shell for CO2 capture, Procedia Eng., 148 (2016) 106–113.
- M. Ahmaruzzaman, V.K. Gupta, Rice husk and its ash as lowcost
adsorbents in water and wastewater treatment, Ind. Eng.
Chem. Res., 50 (2011) 13589–13613.
- Y. Zhou, L. Zhang, Z. Cheng, Removal of organic pollutants
from aqueous solution using agricultural wastes: a review,
J. Mol. Liq., 212 (2015) 739–762.
- S. Yi, B. Gao, Y. Sun, J. Wu, X. Shi, B. Wu, X. Hu, Removal of
levofloxacin from aqueous solution using rice-husk and woodchip
biochars, Chemosphere, 150 (2016) 694–701.
- E.A. Abigail M., R. Chidambaram, Rice husk as a low cost
nanosorbent for 2,4-dichlorophenoxyacetic acid removal from
aqueous solutions, Ecol. Eng., 92 (2016) 97–105.
- L. Shi, X. Zho, S. Zhou, Z. Yalei, Adsorption Isotherm and
Thermodynamic of Triclosan on Activated Sludge, 2011
International Conference on Electric Technology and Civil
Engineering, Lushan, China, 2011, pp. 975–978.
- A.A. Sharipova, S.B. Aidarova, N.E. Bekturganova, A. Tleuova,
M. Schenderlein, O. Lygina, S. Lyubchik, R. Miller, Triclosan
as model system for the adsorption on recycled adsorbent
materials, Colloids Surf., A, 505 (2016) 193–196.
- S.B. Daffalla, H. Mukhtar, M.S. Shaharun, Characterization of
adsorbent developed from rice husk: effect of surface functional
group on phenol adsorption, J. Appl. Sci., 10 (2010) 1060–1067.
- M.C. Hoyos-Sánchez, A.C. Córdoba-Pacheco, L.F. Rodríguez-
Herrera, R. Uribe-Kaffure, Removal of Cd(II) from aqueous
media by adsorption onto chemically and thermally treated rice
husk, J. Chem., 2017 (2017) 1–8.
- H. Kaur, A. Bansiwal, G. Hippargi, G.R. Pophali, Effect of
hydrophobicity of pharmaceuticals and personal care products
for adsorption on activated carbon: adsorption isotherms,
kinetics and mechanism, Environ. Sci. Pollut. Res., 25 (2018)
20473–20485.
- R. Baccar, M. Sarrà, J. Bouzid, M. Feki, P. Blánquez, Removal of
pharmaceutical compounds by activated carbon prepared from
agricultural by-product, Chem. Eng. J., 211–212 (2012) 310–317.
- W.W. Simons, The Sadtler Handbook of Infrared Spectra,
S.R. Laboratories, Sadtler, 1978.
- J. Tang, H. Lv, Y. Gong, Y. Huang, Preparation and characterization
of a novel graphene/biochar composite for aqueous
phenanthrene and mercury removal, Bioresour. Technol.,
196 (2015) 355–363.
- J. Coates, Interpretation of Infrared Spectra, A Practical
Approach, R.A. Meyers, Ed., Encyclopedia of Analytical
Chemistry, John Wiley & Sons, Chichester, 2006, pp. 1–23.
- S. Abrishamkesh, M. Gorji, H. Asadi, G. Bagheri-Marandi,
A. Pourbabaee, Effects of rice husk biochar application on the
properties of alkaline soil and lentil growth, Plant Soil Environ.,
61 (2015) 475–482.
- D. Lin, B. Xing, Adsorption of phenolic compounds by carbon
nanotubes: role of aromaticity and substitution of hydroxyl
groups, Environ. Sci. Technol., 42 (2008) 7254–7259.
- H.-H. Cho, H. Huang, K. Schwab, Effects of solution chemistry
on the adsorption of ibuprofen and triclosan onto carbon
nanotubes, Langmuir, 27 (2011) 12960–12967.
- Y. Liu, X. Zhu, F. Qian, S. Zhang, J. Chen, Magnetic activated
carbon prepared from rice straw-derived hydrochar for
triclosan removal, RSC Adv., 4 (2014) 63620–63626.
- Y.S. Ho, G. McKay, Pseudo-second order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- A. Ergene, K. Ada, S. Tan, H. Katırcıoğlu, Removal of Remazol
Brilliant Blue R dye from aqueous solutions by adsorption onto
immobilized Scenedesmus quadricauda: equilibrium and kinetic
modeling studies, Desalination, 249 (2009) 1308–1314.
- X. Guo, F. Chen, Removal of arsenic by bead cellulose loaded
with iron oxyhydroxide from groundwater, Environ. Sci.
Technol., 39 (2005) 6808–6818.
- S. Zhou, Y. Shao, N. Gao, J. Deng, C. Tan, Equilibrium, kinetic,
and thermodynamic studies on the adsorption of triclosan onto
multi-walled carbon nanotubes, Clean Soil Air Water, 41 (2013)
539–547.
- American Water Works Association, J.K. Edzwald, Water
Quality & Treatment: A Handbook on Drinking Water, 6th ed.,
McGraw-Hill Education, New York, NY, 2011.
- D. Duranoğlu, A.W. Trochimczuk, U. Beker, Kinetics and
thermodynamics of hexavalent chromium adsorption onto
activated carbon derived from acrylonitrile-divinylbenzene
copolymer, Chem. Eng. J., 187 (2012) 193–202.
- D.P. Mungasavalli, T. Viraraghavan, Y.-C. Jin, Biosorption of
chromium from aqueous solutions by pretreated Aspergillus
niger: batch and column studies, Colloids Surf., A, 301 (2007)
214–223.
- A.A. Inyinbor, F.A. Adekola, G.A. Olatunji, Kinetics, isotherms
and thermodynamic modeling of liquid phase adsorption
of Rhodamine B dye onto Raphia hookerie fruit epicarp, Water
Resour. Ind., 15 (2016) 14–27.
- M.M.S. Saif, N.S. Kumar, M.N.V. Prasad, Binding of cadmium
to Strychnos potatorum seed proteins in aqueous solution:
adsorption kinetics and relevance to water purification,
Colloids Surf., B, 94 (2012) 73–79.
- H. Gao, J. Chen, Y. Zhang, X. Zhou, Sulfate radicals induced
degradation of triclosan in thermally activated persulfate
system, Chem. Eng. J., 306 (2016) 522–530.