References

  1. S.M. Yakout, A.A.M. Daifullah, S.A. El-Reefy, Adsorption of naphthalene, phenanthrene and pyrene from aqueous solution using low-cost activated carbon derived from agricultural wastes, Adsorpt. Sci. Technol., 31 (2013) 293–302.
  2. E.R.L. Tiburtius, P. Peralta-Zamora, A. Emmel, Treatment of gasoline-contaminated waters by advanced oxidation processes, J. Hazard. Mater., 126 (2005) 86–90.
  3. Y. Huang, A.N. Fulton, A.A. Keller, Simultaneous removal of PAHs and metal contaminants from water using magnetic nanoparticle adsorbents, Sci. Total Environ., 571 (2016) 1029–1036.
  4. H. Gupta, Anthracene removal from water onto activated carbon derived from vehicular tyre, Sep. Sci. Technol., 53 (2018) 613–625.
  5. B. Gupta, H. Gupta, Iron oxide mediated degradation of mutagen pyrene and determination of degradation products, Int. J. Environ. Sci. Dev., 6 (2015) 908–912.
  6. X. Yang, J. Li, T. Wen, X. Ren, Y. Huang, X. Wang, Adsorption of naphthalene and its derivatives on magnetic graphene composites and the mechanism investigation, Colloids Surf., A, 422 (2013) 118–125.
  7. E.M.Ö. Kaya, A.S. Özcan, Ö. Gök, A. Özcan, Adsorption kinetics and isotherm parameters of naphthalene onto naturaland chemically modified bentonite from aqueous solutions, Adsorption, 19 (2013) 879–888.
  8. R.S. DeFever, N.K. Geitner, P. Bhattacharya, F. Ding, P.C. Ke, S. Sarupria, PAMAM dendrimers and graphene: materials for removing aromatic contaminants from water, Environ. Sci. Technol., 49 (2015) 4490–4497.
  9. A.A. Daifullah, B. Girgis, Impact of surface characteristics of activated carbon on adsorption of BTEX, Colloids Surf., A, 214 (2003) 181–193.
  10. M. Faraji, Y. Yamini, A. Saleh, M. Rezaee, M. Ghambarian, R. Hassani, A nanoparticle-based solid-phase extraction procedure followed by flow injection inductively coupled plasma-optical emission spectrometry to determine some heavy metal ions in water samples, Anal. Chim. Acta, 659 (2010) 172–177.
  11. C. Huang, B. Hu, Silica-coated magnetic nanoparticles modified with γ-mercaptopropyltrimethoxysilane for fast and selective solid phase extraction of trace amounts of Cd, Cu, Hg, and Pb in environmental and biological samples prior to their determination by inductively co, Spectrochim. Acta, Part B, 63 (2008) 437–444.
  12. S. Shariati, M. Faraji, Y. Yamini, A.A. Rajabi, Fe3O4 magnetic nanoparticles modified with sodium dodecyl sulfate for removal of safranin O dye from aqueous solutions, Desalination, 270 (2011) 160–165.
  13. J.H. Jang, H.B. Lim, Characterization and analytical application of surface modified magnetic nanoparticles, Microchem. J., 94 (2010) 148–158.
  14. A.A. Al-rashdi, Double-functionalized magnetic nanoparticles for preconcentration and determination of polycyclic aromatic hydrocarbons in water samples, Anal. Chem. Res., 10 (2016) 9–17.
  15. E. Abbasi, S. Aval, A. Akbarzadeh, M. Milani, H. Nasrabadi, S. Joo, Y. Hanifehpour, K. Nejati-Koshki, R. Pashaei-Asl, Dendrimers: synthesis, applications, and properties, Nanoscale Res. Lett., 9 (2014) 247.
  16. M. Sajid, M.K. Nazal, Ihsanullah, N. Baig, A.M. Osman, Removal of heavy metals and organic pollutants from water using dendritic polymers based adsorbents: a critical review, Sep. Purif. Technol., 191 (2018) 400–423.
  17. S. Charles, N. Vasanthan, D. Kwon, G. Sekosan, S. Ghosh, Surface modification of poly(amidoamine) (PAMAM) dendrimer as antimicrobial agents, Tetrahedron Lett., 53 (2012) 6670–6675.
  18. Y. Liu, V.S. Bryantsev, M.S. Diallo, W.A. Goddard III, PAMAM dendrimers undergo pH responsive conformational changes without swelling, J. Am. Chem. Soc., 131 (2009) 2798–2799.
  19. E. Vunain, A. Mishra, B. Mamba, Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: a review, Int. J. Biol. Macromol., 86 (2016) 570–586.
  20. C.M. Chou, H.L. Lien, Dendrimer-conjugated magnetic nanoparticles for removal of zinc(II) from aqueous solutions, J. Nanopart. Res., 13 (2011) 2099–2107.
  21. M. Sajid, C. Basheer, Layered double hydroxides: emerging sorbent materials for analytical extractions, TrAC, Trends Anal. Chem., 75 (2016) 174–182.
  22. R.M. Triano, M.L. Paccagnini, A.M. Balija, Effect of dendrimeric composition on the removal of pyrene from water, Springerplus, 4 (2015) 511.
  23. S. Aliannejadi, A.H. Hassani, H.A. Panahi, S.M. Borghei, Fabrication and characterization of high-branched recyclable PAMAM dendrimer polymers on the modified magnetic nanoparticles for removing naphthalene from aqueous solutions, Microchem. J., 145 (2019) 767–777.
  24. S. Chandra, G. Noronha, S. Dietrich, H. Lang, D. Bahadur, Dendrimer-magnetic nanoparticles as multiple stimuli responsive and enzymatic drug delivery vehicle, J. Magn. Magn. Mater., 380 (2015) 7–12.
  25. M. Gao, W. Li, J. Dong, Z. Zhang, B. Yang, Synthesis and characterization of superparamagnetic Fe3O4@SiO2 core-shell composite nanoparticles, World J. Condens. Matter Phys., 1 (2011) 49–54.
  26. M. Jafarzadeh, E. Soleimani, P. Norouzi, R. Adnan, H. Sepahvand, Preparation of trifluoroacetic acid-immobilized Fe3O4@SiO2–APTES nanocatalyst for synthesis of quinolines, J. Fluorine Chem., 178 (2015) 219–224.
  27. R.B. Yang, P.M. Reddy, C.J. Chang, P.A. Chen, J.K. Chen, C.C. Chang, Synthesis and characterization of Fe3O4/polypyrrole/carbon nanotube composites with tunable microwave absorption properties: role of carbon nanotube and polypyrrole content, Chem. Eng. J., 285 (2016) 497–507.
  28. L. Subbiah, S. Palanisamy, B.T. Sivaprakasam, D. Elamurugan, Synthesis and evaluation of polyamidoamine (Pamam) dendrimer as a carrier of cefixime drug, World J. Pharm. Pharm. Sci., 5 (2016) 858–867.
  29. M. Kostić, J. Mitrović, M. Radović, M. Đorđević, Mi. Petović, D. Bojić, A. Bojić, Effects of power of ultrasound on removal of Cu(II) ions by xanthated Lagenaria vulgaris shell, Ecol. Eng., 90 (2016) 82–86.
  30. A.E. Yayayürük, O. Yayayürük, Facile synthesis of magnetic iron oxide coated amberlite XAD-7HP particles for the removal of Cr(III) from aqueous solutions: sorption, equilibrium, kinetics and thermodynamic studies, J. Environ. Chem. Eng., 7 (2019) 103145.
  31. H. Yang, H. Li, J. Zhai, L. Sun, Y. Zhao, H. Yu, Magnetic prussian blue/graphene oxide nanocomposites caged in calcium alginate microbeads for elimination of cesium ions from water and soil, Chem. Eng. J., 246 (2014) 10–19.
  32. Y. Wang, P. Su, S. Wang, J. Wu, J. Huang, Y. Yang, Dendrimer modified magnetic nanoparticles for immobilized BSA: a novel chiral magnetic nano-selector for direct separation of racemates, J. Mater. Chem. B, 1 (2013) 5028–5035.
  33. B.-F. Pan, F. Gao, H.-C. Gu, Dendrimer modified magnetite nanoparticles for protein immobilization, J. Colloid Interface Sci., 284 (2005) 1–6.
  34. K.S. Aneja, S. Bohm, A.S. Khanna, H.L.M. Bohm, Graphene based anticorrosive coatings for Cr(VI) replacement, Nanoscale, 7 (2015) 17879–17888.
  35. S. Chen, J. Hong, H. Yang, J. Yang, Adsorption of uranium(VI) from aqueous solution using a novel graphene oxideactivated carbon felt composite, J. Environ. Radioact., 126 (2013) 253–258.
  36. P. Sharma, B.K. Saikia, M.R. Das, Removal of methyl green dye molecule from aqueous system using reduced graphene oxide as an efficient adsorbent: kinetics, isotherm and thermodynamic parameters, Colloids Surf., A, 457 (2014) 125–133.
  37. F. Ma, H. Zhao, L. Sun, Q. Li, L. Huo, T. Xia, S. Gao, G. Pang, Z. Shi, S. Feng, A facile route for nitrogen-doped hollow graphitic carbon spheres with superior performance in supercapacitors, J. Mater. Chem., 22 (2012) 13464.
  38. F. Jiryaei Sharahi, A. Shahbazi, Melamine-based dendrimer amine-modified magnetic nanoparticles as an efficient Pb(II) adsorbent for wastewater treatment: adsorption optimization by response surface methodology, Chemosphere, 189 (2017) 291–300.
  39. J. Blažević, L. Colombo, The vibrational spectrum of the benzophenone molecule, J. Raman Spectrosc., 11 (1981) 143–149.
  40. N.K. Ladani, M.P. Patel, R.G. Patel, A convenient one-pot synthesis of series of 3-(2,6-diphenyl-4-pyridyl)hydroquinolin-2-one under microwave irradiation and their antimicrobial activities, Indian J. Chem., 48B (2009) 261266.
  41. A. Demir, A. Baykal, H. Sözeri, R. Topkaya, Low temperature magnetic investigation of Fe3O4 nanoparticles filled into multiwalled carbon nanotubes, Synth. Met., 187 (2014) 75–80.
  42. A. Maleki, R. Rahimi, S. Maleki, Preparation and characterization of magnetic chlorochromate hybrid nanomaterials with triphenylphosphine surface-modified iron oxide nanoparticles, J. Nanostruct. Chem., 4 (2014) 153–160.
  43. P. Das, S. Goswami, S. Maiti, Removal of naphthalene present in synthetic waste water using novel graphene/graphene oxide nano sheet synthesized from rice straw: comparative analysis, isotherm and kinetics, Front. Nanosci. Nanotechnol., 2 (2016) 38–42.
  44. N. Budhwani, Removal of polycyclic aromatic hydrocarbons present in tyre pyrolytic oil using low cost natural adsorbents, Environ. Ecol. Eng., 9 (2015) 186–190.
  45. S.S.M. Hassan, H.I. Abdel-Shafy, M.S.M. Mansour, Removal of pyrene and benzo(a)pyrene micropollutant from water via adsorption by green synthesized iron oxide nanoparticles, Adv. Nat. Sci. Nanosci. Nanotechnol., 9 (2018) 015006.
  46. H. Gupta, R. Kumar, Removal of PAH anthracene from aqueous media using banana peel activated carbon, Int. J. Sci. Res. Environ. Sci., 4 (2016) 109–114.
  47. A. Pourjavadi, A. Abedin-Moghanaki, S.H. Hosseini, Synthesis of poly(amidoamine)-graft-poly(methyl acrylate) magnetic nanocomposite for removal of lead contaminant from aqueous media, Int. J. Environ. Sci. Technol., 13 (2016) 2437–2448.
  48. O. Yayayuruk, Sorption of cationic and anionic dyes using poly (acrylamide) grafted onto cross-linked poly (4-vinyl pyridine) from aqueous solutions, J. Environ. Prot. Ecol., 19 (2018) 826–836.
  49. N.K. Amin, Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: adsorption equilibrium and kinetics., J. Hazard. Mater., 165 (2009) 52–62.
  50. Y. Liu, Some consideration on the Langmuir isotherm equation, Colloids Surf., A, 274 (2006) 34–36.
  51. A.O. Alade, O.S. Amuda, T.J. Afolabi, A.A. Okoya, Adsorption of naphthalene onto activated carbons derived from milk bush kernel shell and flamboyant pod, J. Environ. Chem. Ecotoxicol., 4 (2012) 124–132.
  52. M.M. Kostić, M.D. Radović, J.Z. Mitrović, D.V. Bojić, D.D. Milenković, A.L. Bojić, Application of new biosorbent based on chemicaly modified Lagenaria vulgaris shell for the removal of copper(II) from aqueous solutions: effects of operational parameters, Hem. Ind., 67 (2013) 559–567.
  53. D. Dutta, D. Thakur, D. Bahadur, SnO2 quantum dots decorated silica nanoparticles for fast removal of cationic dye (methylene blue) from wastewater, Chem. Eng. J., 281 (2015) 482–490.
  54. M. Kostić, M. Radović, J. Mitrović, M. Antonijević, D.Bojić, M. Petrović, A. Bojic, Using xanthated Lagenaria vulgaris shell biosorbent for removal of Pb(II) ions from wastewater, J. Iran. Chem. Soc., 11(2014) 565–578.
  55. C.B. Vidal, A.L. Barros, C.P. Moura, A.C.A. de Lima, F.S. Dias, L.C.G. Vasconcellos, P.B.A. Fechine, R.F. Nascimento, Adsorption of polycyclic aromatic hydrocarbons from aqueous solutions by modified periodic mesoporous organosilica, J. Colloid Interface Sci., 357 (2011) 466–73.
  56. N. Wang, Y. Zhang, F. Zhu, J. Li, S. Liu, P. Na, Adsorption of soluble oil from water to graphene, Environ. Sci. Pollut. Res., 21 (2014) 6495–6505.
  57. M.I. Temkin, V.M. Pyzhev, Kinetic of ammonia synthesis on promoted iron catalyst, Acta Physiochimica URSS, 12 (1940) 327–356.
  58. A.O. Dada, A.P. Olalekan, A.P. Olatunya, O. Dada, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, IOSR J. Appl. Chem., 3 (2012) 38–45.
  59. J. Nastaj, A. Przewłocka, M. Rajkowska-Myśliwiec, Biosorption of Ni(II), Pb(II) and Zn(II) on calcium alginate beads: equilibrium, kinetic and mechanism studies, Pol. J. Chem. Technol., 18 (2016) 81–87.
  60. O. Redlich, D.L. Peterson, A useful adsorption isotherm, J. Phys. Chem., 63 (1959) 1024–1026.
  61. S. Chatterjee, D.S. Lee, M.W. Lee, S.H. Woo, Enhanced molar sorption ratio for naphthalene through the impregnation of surfactant into chitosan hydrogel beads, Bioresour. Technol., 101 (2010) 4315–4321.
  62. A.C. Ion, I. Ion, A. Culetu, Adsorption of naphthalene onto carbonic nanomaterial graphitic nanoplatelets in aqueous solutions, UPB Sci. Bull. Ser. B, 73 (2011) 55–66.
  63. S.Y. Lee, S.J. Kim, Adsorption of naphthalene by HDTMA modified kaolinite and halloysite, Appl. Clay Sci., 22 (2002) 55–63.
  64. P. Sivakumar, P.N. Palanisamy, Adsorption studies of Basic Red 29 by a non-conventional activated carbon prepared from Euphorbia antiquorum L, Int. J. Chem. Tech. Res., 1 (2009) 502–510.
  65. F.A. Dawodu, K.G. Akpomie, Simultaneous adsorption of Ni(II) and Mn(II) ions from aqueous solution unto a Nigerian kaolinite clay, J. Mater. Res. Technol., 3 (2014) 129–141.
  66. M. Irannajad, H.K. Haghighi, Removal of Co2+, Ni2+, and Pb2+ by manganese oxide-coated zeolite: equilibrium, thermodynamics, and kinetics studies, Clays Clay Miner., 65 (2017) 52–62.
  67. M. Kostić, M. Đorđević1, J. Mitrović, N. Velinov, D. Bojić, M. Antonijević, A. Bojić, Removal of cationic pollutants from water by xanthated corn cob: optimization, kinetics, thermodynamics, and prediction of purification process, Environ. Sci. Pollut. Res., 24 (2017) 17790–17804.