References

  1. K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review, Water Res., 88 (2016) 428–448.
  2. O. Chan, W. Cheung, G. McKay, Single and multicomponent acid dye adsorption equilibrium studies on tyre demineralised activated carbon, Chem. Eng. J., 191 (2012) 162–170.
  3. B.R. Shah, U.D. Patel, Aqueous pollutants in water bodies can be photocatalytically reduced by TiO2 nano-particles in the presence of natural organic matters, Sep. Purif. Technol., 209 (2019) 748–755.
  4. D. Das, D. Charumathi, N. Das, Bioaccumulation of the synthetic dye Basic Violet 3 and heavy metals in single and binary systems by Candida tropicalis grown in a sugarcane bagasse extract medium: modelling optimal conditions using response surface methodology (RSM) and inhibition kinetics, J. Hazard. Mater., 186 (2011) 1541–1552.
  5. A. Gupta, A. Pal, C. Sahoo, Photocatalytic degradation of a mixture of Crystal Violet (Basic Violet 3) and Methyl Red dye in aqueous suspensions using Ag+ doped TiO2, Dyes Pigm., 69 (2006) 224–232.
  6. A. Di Paola, E. García-López, G. Marcì, L. Palmisano, A survey of photocatalytic materials for environmental remediation, J. Hazard. Mater., 211 (2012) 3–29.
  7. E. Rafiee, E. Noori, A.A. Zinatizadeh, H. Zangeneh, Surfactant effect on photocatalytic activity of Ag-TiO2/PW nanocomposite in DR16 degradation: characterization of nanocomposite and RSM process optimization, Mater. Sci. Semicond. Process., 83 (2018) 115–124.
  8. S. Boumaza, F. Kaouah, D. Hamane, M. Trari, S. Omeiri, Z. Bendjama, Visible light assisted decolorization of azo dyes: Direct Red 16 and Direct Blue 71 in aqueous solution on the p-CuFeO2/n-ZnO system, J. Mol. Catal. A: Chem., 393 (2014) 156–165.
  9. L. Zhang, T. Kanki, N. Sano, A. Toyoda, Photocatalytic degradation of organic compounds in aqueous solution by a TiO2-coated rotating-drum reactor using solar light, Solar Energy, 70 (2001) 331–337.
  10. M. Tahir, C. Cao, F.K. Butt, F. Idrees, N. Mahmood, Z. Ali, I. Aslam, M. Tanveer, M. Rizwan, T. Mahmood, Tubular graphitic-C3N4: a prospective material for energy storage and green photocatalysis, J. Mater. Chem. A, 1 (2013) 13949–13955.
  11. V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, S.C. Pillai, Visible-light activation of TiO2 photocatalysts: advances in theory and experiments, J. Photochem. Photobiol., C, 25 (2015) 1–29.
  12. T. Hasegawa, P. De Mayo, Surface photochemistry: on the mechanism of the semiconductor-mediated isomerization of 4-substituted cis-stilbenes, Langmuir, 2 (1986) 362–368.
  13. A. Alexiadis, I. Mazzarino, Design guidelines for fixed-bed photocatalytic reactors, Chem. Eng. Process. Process Intensif., 44 (2005) 453–459.
  14. M.M. Zeinabad, S.J. Royaee, M. Sohrabi, Photocatalytic degradation of Reactive Black 8 in UV/TiO2/H2O2 system: optimization and modeling using a response surface methodology (RSM), Afinidad, 70 (2013) 212–219.
  15. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37–38.
  16. A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 63 (2008) 515–582.
  17. W. Choi, A. Termin, M.R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem., 98 (1994) 13669–13679.
  18. A. Hameed, V. Gombac, T. Montini, L. Felisari, P. Fornasiero, Photocatalytic activity of zinc modified Bi2O3, Chem. Phys. Lett., 483 (2009) 254–261.
  19. S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics, J. Phys. Chem. A, 115 (2011) 13211–13241.
  20. X. Li, X. Chen, H. Niu, X. Han, T. Zhang, J. Liu, H. Lin, F. Qu, The synthesis of CdS/TiO2 hetero-nanofibers with enhanced visible photocatalytic activity, J. Colloid Interface Sci., 452 (2015) 89–97.
  21. Y. Liu, F. Xin, F. Wang, S. Luo, X. Yin, Synthesis, characterization, and activities of visible light-driven Bi2O3–TiO2 composite photocatalysts, J. Alloys Compd., 498 (2010) 179–184.
  22. B. Moongraksathum, J.-Y. Shang, Y.-W. Chen, Photocatalytic antibacterial effectiveness of cu-doped TiO2 thin film prepared via the peroxo sol–gel method, Catalysts, 8 (2018) 352–353.
  23. A. Shojaie, M. Fattahi, S. Jorfi, B. Ghasemi, Hydrothermal synthesis of Fe-TiO2-Ag nano-sphere for photocatalytic degradation of 4-chlorophenol (4-CP): investigating the effect of hydrothermal temperature and time as well as calcination temperature, J. Environ. Chem. Eng., 5 (2017) 4564–4572.
  24. Y. Cui, X. Zhang, R. Guo, H. Zhang, B. Li, M. Xie, Q. Cheng, X. Cheng, Construction of Bi2O3/g-C3N4 composite photocatalyst and its enhanced visible light photocatalytic performance and mechanism, Sep. Purif. Technol., 203 (2018) 301–309.
  25. X. Meng, Z. Zhang, Bismuth-based photocatalytic semiconductors: introduction, challenges and possible approaches, J. Mol. Catal. A: Chem., 423 (2016) 533–549.
  26. N.S. Lewis, Toward cost-effective solar energy use, Science, 315 (2007) 798–801.
  27. S. Qiu, S.J. Kalita, Synthesis, processing and characterization of nanocrystalline titanium dioxide, Mater. Sci. Eng., A, 435 (2006) 327–332.
  28. M. Grześkowiak, R. Wróbel, J. Grzechulska, J. Przepiórski, Preparation and characterization of titania powders obtained via hydrolysis of titanium tetraisopropoxide, Mater. Sci. Poland, 32 (2014) 71–79.
  29. J. Spiridonova, A. Katerski, M. Danilson, M. Krichevskaya, M. Krunks, I. Oja Acik, Effect of the titanium isopropoxide: acetylacetone molar ratio on the photocatalytic activity of TiO2 thin films, Molecules, 24 (2019) 4326–4328.
  30. S. Qourzal, A. Assabbane, Y. Ait-Ichou, Synthesis of TiO2 via hydrolysis of titanium tetraisopropoxide and its photocatalytic activity on a suspended mixture with activated carbon in the degradation of 2-naphthol, J. Photochem. Photobiol., A, 163 (2004) 317–321.
  31. T. Rojviroon, A. Laobuthee, S. Sirivithayapakorn, Photocatalytic activity of toluene under UV-LED light with TiO2 thin films, Int. J. Photoenergy, 2012 (2012) 1–8.
  32. M. Ni, M.K. Leung, D.Y. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renewable Sustainable Energy Rev., 11 (2007) 401–425.
  33. M.I. Litter, Heterogeneous photocatalysis: transition metal ions in photocatalytic systems, Appl. Catal., B, 23 (1999) 89–114.
  34. V. Koteski, J. Belošević-Čavor, A. Umićević, V. Ivanovski, D. Toprek, Improving the photocatalytic properties of anatase TiO2 (101) surface by co-doping with Cu and N:Ab initio study, Appl. Surf. Sci., 425 (2017) 1095–1100.
  35. S. Jorfi, S. Mirali, A. Mostoufi, M. Ahmadi, Visible light photocatalytic degradation of azo dye and a real textile wastewater using Mn, Mo, La/TiO2/AC nanocomposite, Chem. Biochem. Eng. Q., 32 (2018) 215–227.